
Heterogeneous Distributed Database Systems for Production Use

GOMER THOMAS

Bellcore, 444 Hoes Lane, Piscataway, NJ 08854

GLENN R. THOMPSON

Amoco Production Company Research Center, 4502 East 41st Street, Tulsa, Oklahoma 74135

CHIN-WAN CHUNG

Computer Science Department, GM Research Laboratories, Warren, Michigan 48090

EDWARD BARKMEYER

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

FRED CARTER

Zngres Corporation, 1080 Marina Village Parkway, Alameda, California 94501

MARJORIE TEMPLETON

Data Integration, Inc., 3233 Federal Avenue, Los Angeles, California 90066

STEPHEN FOX

Xerox Custom Systems Division, 7900 Westpark Drive, McLean, Virginia 22102

BERL HARTMAN

Sybase, Inc., 6475 Christie Avenue, Emeryville, California 94608

It is increasingly important for organizations to achieve additional coordination of diverse
computerized operations. To do so, it is necessary to have database systems that can
operate over a distributed network and can encompass a heterogeneous mix of computers,
operating systems, communications links, and local database management systems. This
paper outlines approaches to various aspects of heterogeneous distributed data
management and describes the characteristics and architectures of seven existing
heterogeneous distributed database systems developed for production use. The objective is
a survey of the state of the art in systems targeted for production environments as
opposed to research prototypes.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems-distributed databases; H.2.4 [Database Management]: Systems;
H.2.5 [Database Management]: Heterogeneous Databases

General Terms: Design

Additional Key Words and Phrases: Database integration, distributed query management,
distributed transaction management, federated database, multidatabase, system
architecture

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0360-0300/90/0900-0237 $01.50

ACM Computing Surveys, Vol. 22, No. 3, September 1990

238 l Thomas et al.

CONTENTS

INTRODUCTION
1. HETEROGENEOUS DISTRIBUTED

DATABASE CAPABILITIES
1.1 Schema Integration
1.2 Distributed Query Management
1.3 Distributed Transaction Management
1.4 Administration
1.5 Types of Heterogeneity

2. STANDARDS ACTIVITIES
3. SOME EXISTING SYSTEMS

3.1 ADDS (Amoco Production Company,
Research)

3.2 DATAPLEX (General Motors Corporation)
3.3 IMDAS (National Institute of Standards and

Technology, U. Florida)
3.4 Ingres (Ingres Corporation)
3.5 Mermaid (Data Integration, Inc.)
3.6 MULTIBASE (Xerox Advanced Information

Technology)
3.7 SYBASE (Sybase, Inc.)

4. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

INTRODUCTION

The objectives of this survey paper are to
provide insight into the kinds of heteroge-
neous distributed database capabilities
available in off-the-shelf systems and to
describe the practicalities of in-house de-
velopment of their capabilities; that is,
what can be achieved and what approaches
are likely to be promising.

This paper takes a broad view of the
terms “distributed”, “heterogeneous”, and
“production use.” A database system is con-
sidered to be distributed if it provides access
to data located at multiple (local) sites in a
network, even if it does not provide full
facilities for schema integration, distrib-
uted query management, and/or distributed
transaction management. It is considered
to be heterogeneous if the local nodes have
different types of computers and operating
systems, even if all local databases are
based on the same data model and perhaps
even the same database management sys-
tem. (This definition of heterogeneous is
admittedly at odds with that commonly
used by the research community, where the

term is typically used to imply multiple
data models.) It is considered to be for
production use if it has been, or is being,
developed for that purpose, even if it is
currently only in an advanced prototype
state.

Although a number of specific database
systems are described or mentioned in this
paper, this paper is not intended to contain
a definitive list of heterogeneous distrib-
uted database systems for production use
or to endorse or recommend any particular
system. The information about specific sys-
tems may or may not be entirely accurate,
and it is likely that other systems on the
market, in production use, or under devel-
opment have capabilities equaling or ex-
ceeding those mentioned here.

Section 1 discusses different types of dis-
tributed database capabilities that can be
provided by different systems. Section 2
describes the status of remote database ac-
cess standards, a key factor in the ease of
developing heterogeneous distributed da-
tabase systems. Section 3 describes the
characteristics and architecture of a sam-
pling of existing heterogeneous distributed
database systems developed for production
use. These descriptions are current as of
late 1989, written by individuals who have
been involved in the development of these
systems. Section 4 gives a brief summary
of the state of the art.

1. HETEROGENEOUS DISTRIBUTED
DATABASE CAPABILITIES

Different types of capabilities can be
provided by heterogeneous distributed
database systems. They include schema
integration, distributed query processing,
distributed transaction management, ad-
ministrative functions, and coping with
different types of heterogeneity. Schema
integration has to do with the way in which
users can logically view the distributed
data. Distributed query management deals
with the analysis, optimization, and exe-
cution of queries that reference distributed
data. Distributed transaction management
deals with the atomicity, isolation, and
durability of transactions in a distributed
system. Administrative functions include

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 239

such things as authentication and authori-
zation, defining and enforcing semantic
constraints on the data, and manage-
ment of data dictionaries and directories.
Heterogeneity can include differences in
hardware, operating systems, communica-
tions links, database management system
(DBMS) vendors, and/or data models.
These are all important aspects of distrib-
uted data management. In considering
them, it is important to recognize there is
no “ideal” set of capabilities for all envi-
ronments or applications. A particular
capability may be invaluable in certain sit-
uations while being totally unsuitable in
others.

1.1 Schema Integration

Each local database has a local schema,
describing the structure of the data in that
database. Each user has a user view, de-
scribing that portion of the distributed data
that is of interest to the user, possibly re-
organized to meet the user’s requirements.
There are two general approaches to the
problem of providing mappings between
user views and the local schemata:

(1)

(2)

All of the local schemata may be inte-
grated into a single global schema that
represents all data in the entire distrib-
uted system. All user views are derived
from this global schema.
Various portions of various local sche-
mata may be integrated into multiple
federated schemata. These federated
schemata may correspond closely to
user views, or user views may be further
derived from these federated schemata.

In either approach one is faced with schema
integration-the process of developing a
conceptual schema that encompasses a
collection of local schemata.

If the local databases are based on differ-
ent data models and/or use different names
or representations for particular data ele-
ments, the usual first step is for each local
schema to be translated into an equivalent
schema in some common data model using
common names and representations. Thus,
in this case one is also faced with a schema
translation problem.

The simplest form of schema integration
is schema union, whereby a conceptual
schema seen by distributed users is the
disjoint union of local schemata or perhaps
of subsets or views of local schemata. In
the simplest form of this, a data item in the
conceptual schema is identified by the
name of a local database concatenated with
the name of an item in the local database.
More commonly, some type of aliasing
capability is provided.

More sophisticated capabilities that can
be provided include the following:

Replication, whereby data items in differ-
ent local databases may be identified as
copies of each other
Horizontal fragmentation, whereby data
items in different local databases may be
identified as logically belonging to the
same table or entity set in the integrated
schema
Vertical fragmentation, whereby data
items in different local databases may be
identified as logically representing the
same row or entity in the integrated
schema but containing different attri-
butes for the row or entity
Data mapping, whereby data types or
data values are converted for conformity
with each other

As an example of data mapping, one local
database might store temperatures as float-
ing point numbers representing degrees
Celsius, and another local database might
store temperatures as character string rep-
resentations of degrees Fahrenheit. To in-
tegrate these schemas, one might want to
map degrees Fahrenheit to degrees Celsius
and map character string representations
of numbers to floating point representa-
tions, or vice versa.

1.2 Distributed Query Management

Distributed query management provides
the ability to combine data from different
local databases in a single retrieval opera-
tion (as seen by the user). This capability
may or may not be provided by a distributed
database system. In some systems, an ap-
plication needing data from multiple local

ACM Computing Surveys, Vol. 22, No. 3, September 1990

240 l Thomas et al.

databases would explicitly send queries to
the individual databases rather than pre-
senting a single distributed query to a dis-
tributed query manager. If distributed
query management is provided, there are
many possible approaches to optimizing the
heterogeneous distributed queries and
managing their execution. To complicate
the optimization problem, there may be
great differences in the speeds of the com-
munications links, the speeds and work-
loads of the local processors, and the nature
of the data operations available at the lo-
cal sites. Depending on the system char-
acteristics, it may be desirable to exploit
parallelism in the execution of queries.
Replicated and/or fragmented data also
add complexity. One of the simpler ap-
proaches to query management is to move
all the desired data to the query site and
combine them there. More sophisticated
approaches may consider a wide range of
algorithms and take account a wide range
of factors in evaluating them [Chen et al.
19891.

1.3 Distributed Transaction Management

Distributed transaction management pro-
vides the ability to read and/or update data
at multiple sites within a single transaction,
preserving the transaction properties of
atomicity, isolation, and durability [Ceri
and Pelagatti 19841. This capability may or
may not be provided by a distributed data-
base system. If it is provided, there are two
aspects provided: concurrency control pro-
tocols and commit protocols.

Local concurrency control protocols en-
sure that the execution of local transac-
tions, whether originating at the local
database or coming from a remote site,
meet the isolation standards of the local
system. In most cases this means the exe-
cution is serializable; that is, the actual
execution is equivalent to the serial execu-
tion of the transactions in some order [Es-
waran et al. 19761. Distributed concurrency
control protocols are designed to ensure
that distributed transactions are globally
serializable; that is, that the serializations
of the local components at all the databases
are compatible with some global serializa-

tion of all the distributed transactions
[Traiger et al. 19821.

Local commit protocols guarantee atom-
icity and durability of local transactions;
that is, that either all of the a&ions of a
local transaction complete and commit or
none of them do. Distributed commit pro-
tocols guarantee global atomicity and
durability; that is, that either all of the
local subtransactions of a distributed
transaction complete and commit or none
of them do.

These distributed protocols carry an op-
erational cost, as well as an implementation
cost, since a failure at one site may leave
locked data at other sites unavailable for
extended periods of time. Thus, there can
be advantages to not having them if they
are not needed. In some situations the se-
mantics of the databases and applications
may make both distributed concurrency
control and distributed commit protocols
unnecessary. An example of this is a collec-
tion of independently maintained reference
databases (e.g., restaurant ratings or biblio-
graphic listings), with a capability for users
to submit queries that form the union of
information from the different databases in
the collection. Since the databases are
being independently updated and since
users are typically interested in partial in-
formation, even if one of the databases is
temporarily unavailable, there is no need
to ensure global serializability or global
atomicity. In other situations, distributed
commit protocols, but not distributed con-
currency control, may be needed. An ex-
ample of this is a travel reservation system
in which reservations for different re-
sources are independently managed in dif-
ferent databases. The order in which
reservations for different resources are in-
terleaved is not critical, so distributed con-
currency control is not necessary. A user
would, however, often want to package a
number of interdependent reservations into
a single transaction and require that either
they all commit or none of them do.

In other situations, both distributed con-
currency control and commit protocols may
be needed. An example is a banking system
in which accounts at different branches are
maintained in different databases. Global

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems 241

atomicity is needed to ensure that funds
transfers between branches are handled
correctly. Global serializability is needed to
ensure that audit programs run correctly,
even when run concurrently with funds
transfer programs.

1.4 Administration

A number of administrative functions, such
as authorization of users, definition and
enforcement of semantic integrity con-
straints on the data, and maintenance of
schema information, must be performed for
any database system. In a heterogeneous
distributed database system, there are
many choices as to the degree of centrali-
zation and transparency of these adminis-
trative functions.

1.4.1 Authorization Management

At one extreme, authorization can be com-
pletely decentralized, with each user having
a user id at each local database and permis-
sions granted by local database adminstra-
tors and enforced by local database
management systems. At the other ex-
treme, authorization can be completely
centralized, with each user having a sys-
tem-wide user id and permissions granted
on a system-wide basis by a system-wide
database administrator and enforced by a
system-wide distributed query manager. An
intermediate possibility is to have system-
wide user ids but with permissions granted
and enforced at local databases.

One potential advantage of centralized
permissions is that a user can be given
access to certain distributed views while
being denied direct access to the underlying
local data. For example, one might have a
table in one database that tells which em-
ployees are assigned to which division of a
company and another table in another da-
tabase that gives the salary of each em-
ployee. One might want certain users to
have access to the average salaries in the
different divisions of the company but not
to the salaries of individual employees.
With centralized permissions, it is straight-
forward to define a view containing the
average salary information (obtained by

taking the join of the two local tables and
applying aggregation and projection oper-
ations) give the users permission to access
the view but not permission to access the
underlying employee salary table. With
only local permissions, the only choices are
to give the user access to the employee
salary table or not to. There is no mecha-
nism for preventing access to the salary
table but granting access to a view derived
from a join of the salary table with a table
in another database.

1.4.2 Semantic Integrity Management

Some database management systems pro-
vide capabilities for specifying and enforc-
ing semantic integrity rules for the
database instead of leaving that function to
the applications programmers. These in-
clude such things as rules for allowed data
values and existence dependencies. In the
context of heterogeneous distributed data-
bases, this can be done either centrally,
through a global conceptual schema, or lo-
cally, through the individual local schemas.
One potential advantage of the centralized
approach is that distributed integrity rules,
that is, rules that depend on data stored in
different databases, can be enforced.

1.4.3 Location Transparency and Schema
Maintenance

Location transparency is the ability to deal
with distributed data without having to
know where it is or even that it is distrib-
uted. There are two levels at which location
transparency is relevant: the level of the
user (programmer or interactive user) and
the level of the database administrator.

At one extreme, users may have to spec-
ify data items by machine name or address,
DBMS identifier, database name, and data
item name. At the other extreme, users may
only have to specify logical names of data
items. For pure logical data item naming to
work, there must be some kind of naming
convention that guarantees uniqueness of
names for all data items accessible by the
user, a troublesome requirement if there
are users who need access to essentially all
the data of the enterprise. A compromise is

ACM Computing Surveys, Vol. 22, No. 3, September 1990

242 . Thomas et al.

to require the user to specify a logical data-
base name and a data item name, with the
system mapping logical database names to
local databases or federated schemata.
This requires only system-wide uniqueness
of logical database names and uniqueness
of data item names within each logical
database.

There is also a range of choices for how
the database administrator(s) provide lo-
cation transparency for the programmer or
interactive user. At one extreme, the data-
base administrator(s) may individually
maintain multiple data dictionaries at mul-
tiple sites describing what data can be
found where. These data dictionaries may
all represent a global schema and describe
all the data in the system, or they may each
represent a particular federated schema
and only describe data of interest to a par-
ticular group of users. At the other extreme,
the system itself may make all decisions
about data placement and maintain all di-
rectories automatically (although this ex-
treme would be highly unusual in a
heterogeneous system). A compromise ap-
proach is to have any changes in data place-
ment be entered only once and to have the
system automatically propagate the infor-
mation throughout the system as needed.

In a system with multiple federated sche-
mata, the data dictionaries and directories
are typically physically decentralized. In a
system with a single global schema, they
are logically centralized but may be physi-
cally centralized or distributed. In either
case, as indicated above, varying degrees of
centralization and coordination are possi-
ble for their maintenance.

1.5 Types of Heterogeneity

Many people in the research community
have traditionally regarded a “heteroge-
neous” database system as one involving
multiple data models. From a practical
standpoint, however, a distributed database
system may involve a number of different
types of heterogeneity-computer hard-
ware, operating systems, communications
links and protocols, database management
systems (vendors), and/or data models-
each of which presents its own problems to

the system developer. Different hardware
and operating systems may use different
data representations, for example, different
character codes or different representations
for floating point numbers. Different com-
munications mechanisms require gateways,
and these can be difficult to implement
because of the different capabilities in-
volved. For example, one protocol may al-
low an out-of-band interruption of a
session, whereas another may not. Differ-
ent DBMS vendors may use different data
definition and data manipulation lan-
guages, even though they may be using the
same data model. Different data models can
present a difficult schema translation and
query translation problem, especially if per-
formance is important.

2. STANDARDS ACTIVITIES

One key to efficient development of heter-
ogeneous distributed database systems is a
standard language and protocol for remote
data access. If all of the local sites in the
system supported a common set of data
operations, accessible via a standard lan-
guage, it would greatly simplify managing
distributed queries. If support for a “pre-
pare to commit” state was also standard-
ized, implementing a distributed two-phase
commit protocol would be very straightfor-
ward. Moreover, if the local systems all
used strict two-phase locking (locks held
until commit point), as many of today’s
database systems do, distributed concur-
rency control would be implied by distrib-
uted two-phase commit [Breitbart and
Silberschatz 19881. Distributed deadlock
detection would, however, be needed.

There are two major hurdles to overcome
in reaching a consensus on the many tech-
nical issues involved in such standards. One
is the usual problem of getting a diverse
community of vendors and users to agree
on a common way of doing things when
they may already have investments in sep-
arate solutions. The other problem, which
in this case, is perhaps more serious is that
there has still been relatively little experi-
ence with distributed databases in produc-
tion use. Even those organizations that
have implemented them often do not feel

ACM Computing Surveys, Vol. 22, NO. 3, September 1990

Heterogeneous Distributed Database Systems 243

they have a good understanding of precisely
what functionality should be provided, let
alone precisely how various things should
be handled in the remote data access lan-
guage. There is not even a widely accepted
reference model for distributed database
systems.

Nonetheless, both the International
Standards Organization (ISO) and the
American National Standards Institute
(ANSI) are active in this area. The RDA
Rapporteur Group of Working Group 3 on
Database of IS0 TC97/SC21 was formed
in late 1985 to work on a Remote Data
Access (RDA) standard, and Subcommittee
X3H2.1 of Technical Committee X3H2 on
Databases of the ANSI/X3 Committee
on Information Processing Systems was
formed in late 1988 to coordinate U.S.
input into the IS0 process. It is possible
that an IS0 Draft International Standard
could be approved as early as mid-1990 and
an International Standard, could be ap-
proved as early as mid-1991.

3. SOME EXISTING SYSTEMS

This section presents a brief description of
a sampling of systems that have been de-
veloped or are being developed for produc-
tion use. Four general types of information
are

(1)

(2)

(3)

(4)

given for each system:

Background-motivation, objectives,
and history for the project or product
System characteristics-capabilities or
features of the system, including its
positioning in Sheth and Larson’s tax-
onomy of heterogeneous distributed
database systems [Sheth and Larson
19901
System architecture-major system
components and their functions
Current status and future plans-in-
cluding, in some cases, an estimate of
the amount of work that has gone into
the project or product and/or some
of the major lessons learned during
development

To avoid numerous footnotes, we consol-
idated the following trademark acknowl-
edgements: IBM, IMS, SQL/DS, DB2,

IBM PC, OS/2, VM, CMS, MVS, and SNA
are trademarks of International Business
Machines Corporation. DEC, VMS, and
VAX are trademarks of Digital Equipment
Corporation. Sun Workstation is a trade-
mark of Sun Microsystems, Inc. Apollo Do-
main is a trademark of Apollo Computers,
Inc. RIM is a trademark of Boeing Com-
puter Services. FOCUS is a trademark of
Information Builders, Inc. UNIX is a reg-
istered trademark of AT&T. ORACLE is a
trademark of Oracle Corporation. IDM is
a trademark of Sharebase, Inc. Mermaid
is a trademark of UNISYS Corporation.
System 2000 is a trademark of Intel Cor-
poration. Ingres/STAR and Ingres/Gate-
way are trademarks of Ingres Corporation
(formerly Relational Technology, Inc.).
SQL Server, SQL Toolset, Open Client,
and Open Server are trademarks of Sybase,
Inc.

3.1 ADDS (Amoco Production Company,
Research)

3.1.1 Background on ADDS

The Amoco Distributed Database System
(ADDS) [Breitbart and Tieman 1985;
Breitbart et al. 19861 project began in late
1983, responding to the problem of inte-
grating databases distributed throughout
the corporation. Applications were being
planned that required data from multiple
sources. At the time, database products did
not provide effective means for accessing
or managing data from diverse systems.
Therefore, the ADDS project was initiated
to simplify distributed data access and
management within Amoco.

3.1.2 ADDS System Characteristics

ADDS provides uniform access to preexist-
ing heterogeneous distributed databases.
The ADDS system is based on the rela-
tional data model and uses an extended
relational algebra query language. A subset
of the ANSI SQL language standard is also
supported. In the terminology of [Sheth
and Larson 19901, ADDS is a tightly cou-
pled federated system supporting multiple

ACM Computing Surveys, Vol. 22, No. 3, September 1990

244 . Thomas et al.

federated schemata. Local database sche-
mata are mapped into multiple federated
database schemata, called Composite
DataBase (CDB) definitions. The map-
pings are stored in the ADDS data diction-
ary. The data dictionary is fully replicated
at all ADDS sites to expedite query
processing. A CDB is usually defined for
each application. Multiple applications and
users may, however, share CDB definitions.
Users must be authorized to access specific
CDBs and relational views that are defined
against the CDBs.

The CDBs support the integration of the
hierarchical, relational, and network data
models. Local DBMSs currently supported
include IMS, SQL/DS, DB2, RIM,
INGRES, and FOCUS. Semantically
equivalent data items from different local
databases, as well as appropriate data con-
version for the data items, may be defined.

The user interface consists of an Appli-
cation Program Interface (API) and an in-
teractive interface [Lee et al. 19881. The
API consists of a set of callable procedures
that provide access to the ADDS system
for application programs. Programs use the
API to submit queries for execution, access
the schema of retrieved data, and access
retrieved data on a row-by-row basis.
The API provides programmers with lo-
cation and DBMS transparent access to
distributed databases.

The interactive interface allows terminal
users to execute queries, display the results
of the queries, and save the retrieved data.
The interactive interface is actually an ap-
plication that uses the API to provide a
high-level interface for ADDS. Free-form
query submission is supported for experi-
enced users, and menu-driven query sub-
mission is supported for those less
experienced with the ADDS and SQL lan-
guages. Frequently used queries may be
stored in the query catalog, and cataloged
queries may be selected and modified by
the user before execution.

Queries submitted for execution are com-
piled and optimized for minimal data trans-
mission cost. Semijoins and common
subquery elimination are just two of the
query optimization techniques used. A user

may submit any number of queries for si-
multaneous execution. ADDS allows a user
to “disconnect” from the execution of a
query, which is important for long-running
queries. A failed query is automatically re-
started, without loss of intermediate re-
sults, after the cause of the failure is
determined and corrected. Also, query ex-
ecution may be deferred to nonprime time,
thereby decreasing execution costs.

The ADDS system includes geographi-
cally distributed mainframes running the
VM and MVS operating systems and Sun
and Apollo workstations running the
UNIX operating system. Therefore, provid-
ing a uniform network interface to these
systems is important for ADDS develop-
ment and maintenance. The Network In-
terface Facility (NIFTY) architecture [Lee
et al. 19881 is an extension of the OS1
Reference Model [ISO 19821 and provides
a uniform and reliable interface to com-
puter systems that use different physical
communication networks. An ADDS pro-
cess on one system can initiate a session
with an ADDS process on another system
without regard for the multitude of heter-
ogeneous network hardware and software
that is used to accomplish the session.
Currently, NIFTY supports interprocess
communication using SNA, ethernet
(TCP/IP), and binary synchronous net-
works.

ADDS maintains the autonomy of the
local database systems and does not require
any modifications to local DBMS software.
The only communication between ADDS
and the local DBMSs is in the form of query
submission and data retrieval.

3.1.3 ADDS System Architecture

The layered architecture of the ADDS sys-
tem is illustrated in Figure 1. Global trans-
actions are application programs composed
of one or more global database queries and/
or updates. A single query may reference
data at several sites. The Global Transac-
tion Interface (GTI) verifies the syntactical
correctness of user queries and constructs
a global execution plan. The Global Data
Manager (GDM) determines the location

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems 245

Global
Transactions

;"'-'-----'--""'-'-------- -'-'--------"'----------"---~~-,
I I I GLOBAL I , I # , TRANSACTION

ADDS ; INTERFACE

L # ,
GLg;OE3G;;TA , I I L I I I , L I L GLOBAL , I I , TRANSACTION L I # MANAGER I , , , , I , I , I , I , , I , I L I

Local Local
Transactions Transactions

DBMS l ee DBMS

DATA- DATA-
BASE BASE

Figure 1. ADDS architecture from [Breitbart et al. 19871.

of the data referenced by a global transac-
tion from the CDB definition in the Data
Dictionary. The GDM also manages all
intermediate data that is received from
the Global Transaction Manager (GTM)
during transaction execution. The GTM
manages the execution of the global trans-
actions and allocates servers to process
global subtransactions.

The GTM uses a two-phase server allo-
cation strategy to guarantee the atomicity
of global transactions. All servers remain
allocated to a global transaction until the
transaction completes. This implies that all
local data items referenced by a global
transaction remain locked until the trans-
action completes. Local transactions that
have no data items in common with global
transactions are unaffected. The GTMs on
different network nodes negotiate for
server resources when it is necessary for a
transaction submitted at one node to access
data on other nodes. The servers perform
local security verification, then translate
the subqueries into the language of the local

DBMSs. The servers also perform data
conversion as the local data is retrieved and
transfer the data to the GTM for further
processing.

A “site graph” concurrency control algo-
rithm [Breitbart et al. 1987,1989a; Thomp-
son 19871 was used in early efforts to
support update transactions in ADDS. This
general algorithm guarantees the serializ-
able execution of global transactions with
permitted local transactions and the ab-
sence of global deadlocks [Gligor and
Popescu-Zeletin 19851. In a very active sys-
tem, however, too many global transactions
are aborted. To reduce transaction aborts
and increase throughput, ADDS was mod-
ified to use a two-phase locking algorithm,
with timeouts to guarantee freedom from
global deadlocks. A two-phase commit pro-
tocol is used to write the results of the
global transactions into the local databases.
Although no longer used for concurrency
control, the site graph is an important
tool for guaranteeing global database con-
sistency during commit and recovery

ACM Computing Surveys, Vol. 22, No. 3, September 1990

246 l Thomas et al.

processing [Breitbart et al. 1989b]. Used in
this way, the site graph algorithm provides
acceptable performance.

3.1.4 ADDS Status and Future Plans

A production version of the ADDS system
that supports retrieval transactions has
been deployed within Amoco. Prototype
support for distributed update transactions,
including concurrency control and commit/
recovery management, has been integrated
into a centralized version of the system;
that is, a version in which all global queries
are submitted at a single site. Preparations
are being made for the limited deployment
of the ADDS update system prototype.

Future plans include (1) developing a
decentralized version of the transaction
management, concurrency control, and
commit/recovery algorithms and (2) build-
ing tools to simplify the CDB definition
process and to maintain synchronization
between the CDB definitions and the local
database schemata.

Some of the lessons learned during
ADDS development and deployment are as
follows:

Introducing distributed data manage-
ment into a large organization can be a
monumental problem.
A flexible user interface design is neces-
sary to meet diverse and changing user
requirements.
Adequate query optimization and data
security are essential for system accep-
tance.
Separating the network architecture
from the ADDS architecture allowed con-
centration on important problem areas in
both components individually.

3.2 DATAPLEX (General Motors Corporation)

3.2.1 Background on DATAPLEX

Many different kinds of database manage-
ment systems and file systems are used in
the manufacturing industry because of the
diverse data management requirements.
Historically, there has been no effective
means to share these heterogeneous data-

bases. The lack of effective data sharing
causes inefficient engineering and manu-
facturing activities and business opera-
tions. Duplicated data at different locations
often results in data inconsistency.

A heterogeneous distributed database
system is an effective means of sharing data
in an organization with diverse data sys-
tems. DATAPLEX is a heterogeneous dis-
tributed database management system
being developed by General Motors Cor-
poration [Chung 19901. Sections 3.2.2 and
3.2.3 describe the functions and methodol-
ogies of DATAPLEX in its target full-
function form. Section 3.2.4 describes
its current implementation status.

3.2.2 DATAPLEX System Characteristics

DATAPLEX allows queries and transac-
tions to retrieve and update distributed
data managed by diverse data systems such
that the location of data is transparent to
requestors. In this environment, different
data management systems can run on dif-
ferent operating systems that may be con-
nected by different communication
protocols.

The relational model of data is used as
the global data model. Since different data
models used by unlike database systems
structure data differently, the data defini-
tion for each sharable database in the het-
erogeneous distributed database system is
transformed to an equivalent relational
data definition or conceptual schema. The
conceptual schema is implemented as a set
of overlapping relational schemata, one for
each location. The relations at each loca-
tion represent data objects that need to be
accessed by users at that location. Conse-
quently, conceptual schemata are neither
centralized nor replicated. Thus, in the
terminology of [Sheth and Larson 19901,
DATAPLEX is a tightly coupled fed-
erated system supporting multiple feder-
ated schemata.

Use of a common data model eases the
problem of providing a uniform user inter-
face. Among several relational query lan-
guages, SQL was chosen as the uniform
user interface because SQL is widely used

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 247

and an ANSI standard has been developed
for it. Both interactive SQL queries and
embedded SQL programs are supported.

3.2.3 DATAPLEX System Architecture

The above strategies establish the archi-
tecture of DATAPLEX. Figure 2 shows
DATAPLEX and other elements in a het-
erogeneous distributed database system.
The functions of DATAPLEX are per-
formed by 14 major modules, described
here.

The Controller module schedules the in-
vocations of the rest of the modules and
handles inputs and outputs of the modules.

The User Interface and Application In-
terface modules provide interfaces for quer-
ies to be entered into DATAPLEX. The
User Interface appears to users as a com-
mand prompter or a form-oriented query
facility. The Application Interface is linked
to a compiled application before executing
the application.

The Distributed Database Protocol
(DDBP) module provides communications
between the DATAPLEX software at user
locations and data locations. Different
communication protocols can be used by
adapting the DDBP to them.

The SQL Parser module checks syntactic
errors of SQL statements. The Distributed
Query Decomposer and Distributed Query
Optimizer modules prepare distributed
queries for execution, with the aid of the
Data Dictionary Manager module. The
Translator and Local DBMS Interface mod-
ules provide interfaces to the local database
systems for execution of local subqueries,
and the Relational Operation Processor of
the user-location DATAPLEX merges the
results from the local sites to provide the
final query result.

The Data Dictionary Manager finds the
location of the data referenced by a query
and determines the type of the query. There
are three different types of queries: user-
location query, remote single-location
query, and distributed query. The user-lo-
cation query and the remote single-location
query are special cases of the distributed
query.

To process a distributed retrieval query,
the Distributed Query Decomposer decom-
poses the distributed query into a set of
local queries and a user-location query that
merges the results from other locations. (A
local query references data from a single
location that may be a remote location).
The user-location (source) DATAPLEX
sends local SQL queries to data-location
(target) DATAPLEXs using the DDBP.

The Translator finds query translation
information from a translation table that
records differences of data names and data
structures between the conceptual schema
and the local schema. The Translator
translates a local SQL query to a query
(or program) in a local data manipulation
language (DML) using the translation
information. The distributed query decom-
position method and translation scheme
used by DATAPLEX are described in a
previous report [Chung 19871. The Local
DBMS Interface sends the translated query
to the local DBMS and obtains the local
result. The local result is in a report form
similar to a relation regardless of the data
structure used by a local DBMS.

The Distributed Query Optimizer of the
source DATAPLEX schedules an optimal
data reduction plan using the statistical
information from the target DATAPLEX.
The data reduction plan [Chung and Irani
19861 is a sequence of semijoins that con-
sists of local data reduction operations and
data moves among computers. Upon com-
pletion of the execution of the data reduc-
tion plan, the reduced local results are sent
to the source DATAPLEX. There the Re-
lational Operation Processor of the source
DATAPLEX merges the local results by
processing the user-location query.

To process a distributed update query,
the Distributed Query Decomposer gener-
ates a set of local retrieval queries to iden-
tify the specific data to be updated, as well
as a set of update queries, one for each
relation to be updated.

The Distributed Transaction Coordinator
enforces two-phase locking on referenced
data at the local DBMSs that are involved.
Although there are a number of global
deadlock detection and avoidance methods

ACM Computing Surveys, Vol. 22, No. 3, September 1990

248 l Thomas et al.

LOCAL
DATA

0
LOCAL DBMS 1

USER -+ DATAPLEX
COMMUNICATION

HW & SW

Conceptual
Schema

Detailed Information
and Translation Table

for Local Data

SQL Query 4 , SQL Query
2 Data +I[

COMMUNICATION

LOCAL

6 DATA

Figure 2. DATAPLEX in a heterogeneous distributed database system.

for homogeneous systems [Elmagarmid
19861,there hasnotbeenmuchresearch on
this topic for heterogeneous systems. Until
more research results are available, the
time-out method is used initially to handle
global deadlocks. After the specific data to
be updated is identified by processing the
retrieval part, the local update queries are
processed, incorporating a two-phase com-
mit to enforce the update atomicity, and
then the locks on the referenced data are .
released. There are also Security Manager l

and Error Handler modules.

show the feasibility of the concepts under-
lying the DATAPLEX approach. The
prototype system interfaces an IMS
hierarchical DBMS running under the
MVS operating system and an INGRES
relational DBMS running on a VAX com-
puter under the VMS operating system.

The features the prototype system pro-
vides to users are as follows:

SQL queries to IMS
Distributed SQL queries to IMS and
INGRES

All modules of DATAPLEX are indepen- l

dent of the local data system except for the
Translator and Local DBMS modules.
Thus, any data system can be interfaced to -~

Distributed SQL queries embedded in a
C language program

DATAPLEX by developing these two mod-
ules for them. This architecture is modular
and is an open architecture with which
functionality and performance can be
gradually increased.

3.2.4 DATAPLEX Status and Future Plans

The data types supported between IBM
and DEC computers are characters, text
(variable length fields), integers, floating
point numbers, and packed decimal num-
bers. In addition, the prototype system
checks whether a user is authorized to ac-
cess IMS data at a segment level using the
user id.

A prototype DATAPLEX was jointly de-
veloped in 1986 with a DBMS vendor to

Since rapid prototyping was required to
show the feasibility of the concept before
developing a full-function DATAPLEX,

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 249

updates of IMS data and full query opti-
mization were not implemented in the
prototype system. In addition to these
restrictions, the system supports only a
subset of SQL defined to have the following
syntax:

SELECT list of target attributes
and set functions

FROM list of relations
WHERE qualifications
ORDER BY attributes

where set functions are MAX, MIN, SUM,
COUNT, AVERAGE, and the qualification
contains >, >=, <, <=, =, <>, AND, OR,
NOT, and parentheses.

A testbed has been established at General
Motors Research Laboratories, with a test
distributed database and test transactions.
Users formulate requests based on the re-
lational view of the distributed database.
The location and the type of the actual
database are transparent to users. The sys-
tem executes the requests.

Production IMS data have been used to
test the effect of the size of the database on
efficiency. The data is from the Mainte-
nance Management Information System
(MMIS) running at a car assembly plant.
The MMIS database contains a few
hundred thousand records. This is about
1000 times bigger than that of the test
IMS database. The results of tests using
the production database show the proto-
type system incurs some overhead com-
pared with access using PL/I programs.
As the database size grows, the fraction
of the overhead to the total processing
time decreases. It was observed that the
SQL-to-DL/I Translator and IMS Inter-
face modules were the bottleneck in ac-
cessing IMS data through the prototype
DATAPLEX.

Based on the success of the prototype
system, General Motors Corporation has
initiated the development of a full-function
DATAPLEX system, interfacing IMS,
DB2, and INGRES with outside vendors.
The full-function system uses full SQL, and
the initial version supports distributed re-
trieval and single-location update. Cur-
rently, most of the initial version has been
implemented, and completed components

are being tested using production applica-
tions and data. Subsequent versions will
provide the capabilities of distributed
update, multiple copy synchronization,
and support for horizontal and vertical
partitioning.

3.3 IMDAS (National Institute of Standards
and Technology, U. Florida)

3.3.1 IMDAS Background: Sharing Data in a
Manufacturing Complex

In modern manufacturing systems, two
developments are paramount:

l Industrial Automation-computer sys-
tems controlling and monitoring the
physical processes

l Computer Integrated Manufacturing
(CIM)-direct data sharing among pro-
duction control systems and the engi-
neering and administrative systems that
support them

In most industrial facilities, control, en-
gineering, and administrative systems op-
erate on computer systems and database
systems from different manufacturers.
They contain independently designed,
c ,.ferlapping databases, with logical and
physical differences in the representation
of the same real-world objects. These exist-
ing systems represent a major investment
and support real production. It is not fea-
sible to replace or significantly redesign
them.

The Integrated Manufacturing Data Ad-
ministration System (IMDAS) [Barkmeyer
et al. 1986; Krishnamurthy et al. 1987; Su
et al. 19861 was developed to support a
prototype CIM environment-the NBS Au-
tomated Manufacturing Research Facility
(AMRF) [Nanzetta 19841, a testbed for
small-batch manufacturing automation
and in-process measurement. The objective
was to provide access from many systems
to the many sources of manufacturing data,
cooperating with existing applications on
existing databases while enabling new and
modified application programs to access
data as needed, insulated from accidental
distinctions in location, representation,
and access mechanisms.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

250 l Thomas et al.

3.3.2 IMDAS System Characteristics

In the terminology of [Sheth and Larson
19901, IMDAS is a tightly coupled feder-
ated system with a single global schema.
The integrating data model is the Semantic
Association Model (SAM*) [Su 19851, a
semantic network data model capable of
representing the complex structures and
relationships and many integrity con-
straints found in a manufacturing enter-
prise. A fragmentation schema maps the
global model to the underlying databases,
supporting both horizontal and vertical
partitioning of a given object class.

Existing database systems are front
ended by IMDAS modules supporting an
internal query interchange form, which is
an extended algebra on generalized rela-
tions corresponding to the modeled object
classes, and a corresponding data inter-
change form, expressed in Abstract Syntax
Notation 1 [ISO 1987a, 1987b]. This com-
mon interface is readily mapped onto un-
derlying relational and navigational
databases. A library of routines supporting
it minimizes the effort involved in integrat-
ing new data systems and databases.

The user program phrases queries in an
SQL-like language adapted to the model.
The query is passed to the IMDAS in string
form, rather than precompiled, to permit
access by controllers programmed in non-
standard languages. This mechanism can
support an interactive interface, although
none has been built yet. IMDAS supports
both distributed updates (transaction man-
agement) and distributed retrievals (query
management). The fragmentation schema
does not currently support replication,
however, which is a significant limitation
of the system.

3.3.3 IMDAS System Architecture

The architecture of IMDAS is shown in
Figure 3. The lowest level of architecture
comprises the data repositories-data-
bases, files, controller memories-managed
by commercial DBMSs, file systems, home-
grown application-specific servers, and so
on. These are the existing data systems on
which the IMDAS depends. Each computer

system in the enterprise has a Basic Data
Server (BDAS), which provides the inter-
face between the local repository managers
and the integrated data system. It contains
the front-end processes that provide the
standard interfaces for the local DBMSs.
The BDASs and the DBMSs are the ele-
ments that execute the data manipulations.

The Distributed Data Servers (DDASs)
perform the query processing and transac-
tion management functions. Each DDAS
provides the query interface to all applica-
tion programs within a cluster of computer
systems that are its segment of the enter-
prise and logically integrates the collection
of data repositories managed by the BDASs
in that cluster into a corresponding seg-
ment of the global database. The DDASs
manage the data manipulations.

The Master Data Server (MDAS) is
needed when there is more than one DDAS.
It integrates the separately managed seg-
ments into the global database and man-
ages transactions that cross segment (i.e.,
DDAS) boundaries. The MDAS does not
“manage” the fully distributed system; it is
rather a utility used by the distributed serv-
ers to resolve the global model and provide
concurrency control for transactions that
involve multiple DDASs.

The IMDAS modular architecture per-
mits several “distributed data system ar-
chitectures” to be built from the same
components. A system with exactly one
DDAS and one BDAS is essentially a cen-
tralized system, whereas a system with one
DDAS and multiple BDASs is a distributed
system with centralized control. A system
with multiple DDASs is a distributed sys-
tem with distributed control.

An application program issues a trans-
action to the IMDAS in string form in the
data manipulation language. The DDAS
query processor in that cluster converts the
transaction, expanding application-specific
views into standard operations on concep-
tual generalized relations. If the resulting
query can be executed entirely within
the DDAS segment, it is passed to the
DDAS transaction manager. Otherwise, it
is sent to the MDAS. In either case, the
query processor reports final status to

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 251

APPLICATION
PROGRAM

4

;----------------------,
-'-------'---'--""": i

PROCESSOR

MASTER
DATA SERVER

(mAS)

DISTRIBUTED i
DATA SERVER ; TRANSA

(DDAS) ; MANAGER

Dat
1

;a
L , , , I I I I , I 4 , , L L L , I , . .

TRANSLATOR

B DBMS

Figure 3. The IMDAS hierarchy.

the user program when the transaction is
completed.

The DDAS transaction manager, using a
fragmentation schema describing the dis-
tribution of its segment of the global model,
maps the query into a set of subqueries,
each of which operates on elements of the
global database managed by an individual
DBMS. The mapping algorithm takes into
account the capabilities of the target
DBMS. Operations that exceed the capa-
bilities of the repository DBMS are routed
to a sufficiently capable DBMS, with tem-
porary generalized relations specified to
hold the data to be operated on. This is also
the mechanism by which information units
from multiple DBMSs are integrated.

The subqueries are then dispatched to
the affected BDASs, using optimistic com-
mitment in the case of update, because
many of the DBMSs have no commitment
features at all. That is, individual sub-
transactions commit independently on the
assumption that all will commit. The trans-
action manager uses a locking mechanism

BASIC
.TA SERV

(BDAS)

l ee

'ER

to ensure that simultaneous read/write or
write/write access to the same underlying
“database” is avoided. In this context a
“database” is a modeled collection of infor-
mation, which is a (possibly proper) subset
of the data managed by a single DBMS.
Transactions that “conflict” at this level
are serialized by the controlling transaction
manager, thus effecting distributed concur-
rency control.

An affected BDAS receives subqueries
from the DDAS in the interchange form,
specifying the operations to be performed
on the local data repositories and the
sources and destinations of the associated
data. The BDAS converts the subquery to
the form appropriate to the designated
DBMS and passes it to that DBMS, con-
verting any data involved between the
DBMS form and the interchange data
form, and reports completion to the DDAS.
The BDAS itself accesses any referenced
local data that are not managed by a
DBMS-files or shared memory [Libes
1985; Mitchell and Barkmeyer 1984]-

ACM Computing Surveys, Vol. 22, No. 3, September 1990

252 9 Thomas et al.

converting between the user-specified rep-
resentation and the IMDAS interchange
form. The BDAS also accesses required
remote data by communication with the
remote BDAS, moving the data directly
from producer to consumer without regard
to the control path. (For example, if DDAS-
1 specifies that data be sent from BDAS-1
to BDAS-2, the data would go directly from
BDAS-1 to BDAS-2 without going through
DDAS-1.)

The MDAS is essentially a DDAS trans-
action manager with a fragmentation
schema that describes the distribution of
the global model over the DDASs, instead
of the DBMSs. It accepts transactions from
and reports status to the individual DDAS
query processors. It sends subqueries to and
receives status reports from the individual
DDAS transaction managers. Since the
MDAS is a clone of the DDAS transaction
manager, it can be instantiated in any sta-
tion that has a DDAS and thus can readily
be replaced in the event of failure.

3.3.4 IMDAS Status and Future Plans

IMDAS modules currently exist for VAX
computers running under the VMS oper-
ating system and for Sun Workstations
(which run under the UNIX operating sys-
tem) using TCP/IP networks. IMDAS in-
terfaces currently exist for RTI/Ingres
[Ingres 19861 and BCS/RIM [Boeing Com-
puter Services 19851 systems, for the
object-oriented GBASE system [Le Noan
19881, for the AMRF Geometry Modeling
System [Tu and Hopp 19871, and for sev-
eral file systems and shared-memory sys-
tems. The current IMDAS is just over
100,000 lines of C and Pascal code, and it
represents 15-20 staff years of effort.

A front end for DBMSs using SQL and
IMDAS modules for the IBM PC are in
development. Modifications to IMDAS to
use OS1 networks for both internal and
external communication and the draft
Remote Data Access protocol [ISO 19891
for the user-IMDAS interface are also
underway.

Experience in mapping the IMDAS se-
mantic model to different DBMSs and ap-
plication databases indicates that the use
of a semantic integrating model was a wise

choice, but the SAM* model itself is not
sufficiently flexible. Consideration is being
given to replacement of SAM* with a more
complete semantic network data model into
which many common information models
can be translated; for example, SDM, IDE-
FIX, NIAM, Express, and OSAM*. This
implies reworking of the query language,
the internal query interpretation, and the
mapping onto application databases, each
of which has its own strengths and weak-
nesses, and all of which are appropriate
joint research efforts for the 1990s.

On the other hand, the separation of
paths for control and data flow at the user
interface and within the IMDAS, a clear
departure from conventional wisdom, has
proven itself to be both effective and effi-
cient and yielded a number of other capa-
bilities, coding elegancies, and design
dividends.

3.4 lngres (Ingres Corporation’)

3.4.1 Background on lngres

Ingres Corporation grew out of the
INGRES project at the University of Cali-
fornia at Berkeley, a research project on
relational database technology that began
in the early 1970s [Stonebraker 19861. The
company was incorporated as Relational
Technology, Inc., in 1980 and changed its
name to Ingres Corporation in 1989. The
first commercial Ingres database manage-
ment systems were delivered to customers
in 1981. Ingres products currently are avail-
able for a wide range of mainframes, mini-
computers, workstations, and personal
computers under a wide range of operating
systems.

Ingres/NET, which provides remote ac-
cess from an Ingres application at one site
to an ingres database at another site, was
first introduced in 1983. Ingres/STAR,
which provides transparent access to dis-
tributed data, was first introduced in late
1986.

3.4.2 IngreslSTAR System Characteristics

The Ingres DBMS provides access to an
Ingres database, which is a named collec-
tion of tables. Ingres front-end programs

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems 253

submit SQL queries to the Ingres DBMS
to obtain data stored in the database.

An Ingres Gateway provides a method
whereby data stored in other (i.e., non-
Ingres) data managers is made to appear as
if it were stored in an Ingres database and
thus is made available to Ingres front-end
programs.

The Ingres/STAR system allows users to
access a distributed database, which is de-
fined as a collection of tables from one or
more Ingres databases. Any set of tables
from any set of Ingres databases can be
combined to form a new, distributed
Ingres/STAR database. This includes not
only databases under an Ingres DBMS but
also databases accessible via an Ingres/
Gateway and, in the near future, other
Ingres/STAR databases. A single Ingres/
STAR server may service multiple distrib-
uted databases, and multiple Ingres/STAR
servers may exist in the network. Thus, in
the terminology of [Sheth and Larson
19901, Ingres/STAR is a tightly coupled
federated system supporting multiple fed-
erated schemata.

Access to the Ingres/STAR distributed
databases is transparent in the sense that
once the database has been created, the
users of the database no longer need to
know anything about the existence of the
individual Ingres databases that make up
the distributed database. Their contents
are now available transparently via Ingres/
STAR. Ingres/STAR appears to front-end
programs just as if it were a centralized
Ingres DBMS. Front-end programs func-
tion in the same manner regardless of
whether the database being accessed is dis-
tributed or not, except for the restriction
(in the current release) that within a single
transaction only inserts/deletes/updates to
data at a single site are allowed. That is, a
distributed commit protocol has not yet
been implemented in the current release of
Ingres/STAR.

Ingres/STAR itself does not deal directly
with the physical storage and retrieval of
data. Instead it relies upon the Ingres/
DBMS and/or Ingres/Gateway compo-
nents to do this. The Ingres/STAR com-
ponent communicates with these Ingres
data managers (either Ingres DBMSs or

Gateways) in the same manner a front-end
program would. The same information is
communicated. Ingres/STAR sends a query
language representation of the desired
work, and the data manager replies with
the requested data. Figure 4 illustrates a
typical configuration of users, data man-
agers, and Ingres/STAR servers.

3.4.3 IngresjSTAR System Architecture

As noted above, the Ingres/STAR system
builds a distributed database from a num-
ber of underlying component databases. In
order to provide long-term storage for in-
formation about this federation, Ingres/
STAR uses a local database called the Co-
ordinator Database (CDB). The CDB holds
information on each distributed database
concerning

Which databases are used in the distrib-
uted database

The location of these databases

The data manager associated with each
database

What tables from each database are in-
cluded in the distributed database

Naming (aliasing) information about
these tables

Every Ingres DBMS, whether in a cen-
tralized or in a distributed system, uses
the Internal Ingres Database Database
(IIDBDB) to determine the information
(sites, disks, users, etc.) necessary to access
local or distributed databases. Each site
contains one IIDBDB, any number of da-
tabases, and some number of servers. In-
formation about each Ingres/STAR
distributed database would appear in the
IIDBDBs at sites at which queries to the
distributed database originate. An Ingres/
STAR server must have access to the
IIDBDB containing information about
each component database of each distrib-
uted database that it manages.

Figure 4 depicts a conceptual picture of
the various components and databases
of an Ingres/STAR system. The functions
of Ingres/STAR are provided by seven
major modules, described below.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

254 l Thomas et al.

STAR STAR
SERVER SERVER

GATEWAY DBMS DBMS
SERVER SERVER SERVER

I I
c > C

HETEROGENEOUS INGRES INGRES
DBMS DATABASE DATABASE

L / L -

Figure 4. Configuration of Ingres/STAR system components and databases.

The General Communication Facility
(GCF) provides the intercommunication
among instances of Ingres/STAR, Ingres
DBMSs, and Ingres/Gateways.

The Transaction Processing Facility
(TPF), a feature still under development,
will be responsible for maintaining Ingres/
STAR’s transaction system. It will monitor
the transaction states of the various Ingres/
DBMS, Ingres/Gateway, and Ingres/STAR
partners and keep track of the state of
distributed transactions. Thus, TPF will
know which partners need which instruc-
tions during the prepare, commit, and abort
portions of a two-phase commit transac-
tion. In the event of an Ingres/STAR crash,
it will be TPF’s responsibility to resolve
any outstanding transactions when Ingres/
STAR is running again. TPF will maintain
its own log for recovery of distributed trans-
actions. This log will be separate from any
log maintained by the DBMSs for recovery
of transactions at individual databases.

The Query Evaluation Facility (QEF)
manages the actual execution of queries. It
sends subqueries to the other participants
in a session, manipulates the returned re-
sults as required, and returns the final re-
sults to the Ingres/STAR client.

The Remote Query Facility (RQF) re-
ceives instructions from either QEF or

TPF, formats the instructions, sends
them to other participants in the session
(Ingres/STARs, Ingres/DBMSs, or Ingres/
Gateways), and returns answers to the
requestor.

The Relation Description Facility (RDF)
provides efficient access to catalog infor-
mation by retrieving it, caching it, and
managing the cache.

The Parser Facility (PSF) parses the
query and passes it on to the Optimizer
Facility (OPF) in parsed form. OPF plans
the method of performing the query. This
process is more complex than in an Ingres
DBMS because it must take into account
the capabilities of the various data man-
agers involved in executing the query (since
some may be gateways), the amount of data
that must be moved from one site to an-
other, the network speed(s), and the query-
processing facilities available at the site of
the Ingres/STAR server itself.

3.4.4 IngresjSTAR Status and Future Plans

Gateways are currently available on a pro-
duction basis for RMS files and RDB da-
tabases on VAX computers under the VMS
operating system and for DB2 databases on
IBM (or compatible) mainframes under the
MVS operating system. Gateways are soon

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 255

expected to be available on a production
basis for SQL/DS databases and IMS
databases.

A near-term future release will provide
support for a two-phase commit protocol,
thereby implementing the distributed
transaction management capabilities and
allowing distributed updates with full dis-
tributed data consistency and recovery.
Support is also planned for horizontal and
vertical partitioning of tables and for rep-
licated tables.

One of the biggest challenges in designing
gateways has been in understanding the
capabilities required of the local data man-
agers for participation in distributed oper-
ations. A subset of SQL that is supported
by all gateways has been designed, and this
common SQL is used in the Ingres/STAR
product. This common subset is expected
to evolve over time.

Similarly, providing a unified view of the
system catalogs and data types across a
variety of data managers has been a diffi-
cult job. A set of standard catalog infor-
mation has been defined that is available
from all gateways. This catalog information
is used by Ingres/STAR to obtain infor-
mation about the local databases.

3.5 Mermaid (Data Integration, Inc.)

3.5.1 Background on Mermaid

Development of the Mermaide system be-
gan at System Development Corporation
(now a part of Unisys) in 1982 [Templeton
et al. 1987a, 1987b]. The motivation for the
project was the requirement in the Depart-
ment of Defense (DOD) for accessing and
integrating data stored in autonomous
databases. DOD cannot standardize on a
single type of hardware or DBMS and
therefore must develop the capability to
operate in a permanently heterogeneous
environment. After the completion of
Mermaid it became clear that this require-
ment was not unique to DOD. In fact, any
large organization may have multiple au-
tonomous databases. In 1989, the develop-

@ Mermaid is a trademark of Unisys Corporation.

ment team left Unisys to start Data
Integration, Inc., which is continuing de-
velopment of Mermaid as a commercial
product.

3.5.2 Mermaid System Characteristics

In the terminology of [Sheth and Larson
19901, Mermaid is a tightly coupled feder-
ated system supporting multiple federated
schemata. In a sense, Mermaid is not a
database management system but rather a
front-end system that locates and inte-
grates data that are maintained by local
DBMSs. Parts of the local databases may
be shared with global users.

There are two parts to presenting a single
database view to the user of the federated
system. First, a federated view or schema of
all or parts of the component databases
must be defined. Second, at run time the
system needs to translate from the feder-
ated schema into the form in which the
data are actually stored.

The user is able to use a single query
language, SQL, to access and integrate the
data from the different databases. The sys-
tem automatically locates the data, opens
connections to the backend DBMSs, issues
queries to the DBMSs in the appropriate
query language, and integrates the data
from multiple sources. Integration may re-
quire translation of the data into a standard
data type, translation of the units, combi-
nation or division of fields, union of hori-
zontal fragments, join of vertical fragments,
and/or encoding values.

Several levels of heterogeneity are sup-
ported:

l Hardware
l Operating system of the DBMS host
l Network connection to the DBMS host
l DBMS type and query language
l Data model-relational, network, se-

quential file
l Database schema

Presently the system permits retrieval
across databases and updates to a single
database. A read transaction may see an
inconsistent state of the database, since

ACM Computing Surveys, Vol. 22, No. 3, September 1990

256 l Thomas et al.

local updates may occur in the local data-
bases during query execution. Mermaid
minimizes the window of inconsistency by
making snapshots of all relations as a first
step in processing. The snapshot also re-
duces relations using the query’s selects and
projects and translates the schema into the
federated schema. Updates to replicated
and fragmented relations may cross data-
bases, but the updates to all databases are
not necessarily made concurrently. Pro-
cessing is done interactively, although an
application program interface is being
developed.

3.5.3 Mermaid System Architecture

As shown in Figure 5, Mermaid has four
components: the User Interface, the server,
the Data Dictionary/Directory (DD/D)
and the DBMS Interfaces. Most of the
Mermaid software resides in a server that
exists on the same network as the user
workstations and DBMSs. The DBMSs
may reside on the workstations or on main-
frame computers. The system is designed
for flexibility and modularity. All compo-
nents may reside on a single computer, or
each may reside on a different computer.
In a large system with many users there
may be several copies of the components.

At least one Mermaid server must exist
to provide a platform for the code. The
server contains the optimizer that plans
query processing and the controller that
configures the system and controls execu-
tion. The server runs on a Sun Worksta-
tion, taking advantage of its support for
many network protocols.

The User Interface includes code to au-
thenticate users, initialize the system, edit
queries, maintain a query library, get help
with the system, view reports, and option-
ally manipulate the output returned
through other programs. Support is pro-
vided for both workstations and dumb ter-
minals and for both single window and
multiple window interfaces.

The current Mermaid code provides sev-
eral levels of access control that make it at
least as secure as a commercial DBMS. The
first level of access control is a list of users
with permission to execute Mermaid from

the workstation where the user is logged in.
Next, the DD/D is opened and permissions
are checked for the specific federated da-
tabase or view. These permissions must
reflect the permissions granted by the ad-
ministrators for the underlying databases.
Mermaid then logs into the local computers
and opens the underlying databases.

The query optimizer does dynamic plan-
ning. It first locates all required relations
and selects one or more copies of replicated
relations and some or all fragments of re-
lations. Each local relation is reduced with
selects, projects, and joins to other relations
at the same site. The size of each interme-
diate result is returned and used to plan the
next step. The optimizer considers network
speeds and relative processor speeds when
determining the best way to process the
query. If there are large relations to be
joined, it may perform semijoins between
sites before moving data to an assembly
site. As much processing as possible is done
in parallel.

Each Mermaid component uses the RPC
remote procedure call protocol above
Transmission Control Protocol/Internet
Protocol (TCP/IP) to communicate with
the other components, with the possible
exception of code residing on the DBMS
host. This allows the communication to be
the same whether the processes are local or
remote. All messages between DBMS In-
terfaces go through the server, which pro-
vides protocol conversion. For example, if
one DBMS site uses LU6.2 and another
uses TCP/IP, the server would receive
a message from the DBMS interface
(DBMSI) at the first site using an LU6.2
protocol and send it to the DBMS1 at the
second site using the TCP/IP protocol.

The Data Dictionary/Directory is a re-
lational database, stored in a commercial
DBMS, that contains information about
the databases and environment. Figure 5
shows the case of the DD/D residing on the
server. The DD/D may also reside on a
different computer.

The DBMSs generally reside on different
computers. Mermaid has an open architec-
ture that will support the development of
interfaces to many types of DBMS. The
only requirement is that the data are

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems l 257

MERMAID
SERVER

DUMB TERMINAL UI SUNWINDOWS UI DD/D

& CONTROLLER INTERFACE

NETWORK INTERFACE

T.AN

TERMINAL

WORKSTATION

CLASS II

TERMINAL
INTERFACE

Figure 5. Mermaid system architecture.

managed by a DBMS that provides sepa-
ration of the application from the data,
retrieval of data elements by name (not file
offsets), selection of records, an interactive
query language, and concurrency control.

There are three generic types of DBMS
interface. A Class I DBMS is the favored
type. The current INGRES, ORACLE, and
IDM interfaces fall into this class. The
DBMS1 code can be put on the same com-
puter as the DBMS and interfaced to the
DBMS through a subroutine call. This pro-
vides the most efficient operation and the
best error handling. A Class II DBMS
either does not support standard network
protocols or does not allow the Mermaid
DBMS interface code to reside on the same
computer as the DBMS. An example of this
would be a database machine. The schema
and language translators then reside on the
server or on another front-end computer. A
Class III DBMS is accessed using a termi-
nal emulator interface such as a 3270 em-
ulator from a front-end processor. An
example of this would be a DBMS that only
supports an interactive terminal interface.

RETRIEVAL

This type of interface can be difficult to
develop and is weak in error handling.

Mermaid also has the capability to re-
trieve data from files. A file is a typed object
with a retrieval method and a display
method. The user selects a set of files of
interest by searching on structured fields
and listing structured fields and files in the
target list. The report looks like a standard
report from a relational system except that
files are given a symbolic name. The user
enters the symbolic name of one or more
files he or she wants to see. The method
(process) to retrieve the file is started
on the computer where the file is stored,
and the method (process) to display the
file is started in a window on the user’s
workstation. New file types can be sup-
ported by writing the retrieve and display
methods.

3.5.4 Mermaid Status and Future Plans

The run-time part of Mermaid was com-
pleted at Unisys. Work on the system
was started in 1982, and the system was

ACM Computing Surveys, Vol. 22, No. 3, September 1990

258 l Thomas et al.

completely recoded from 1986 to 1987. The
total level of effort was 30-40 staff years.

Data Integration, Inc., was founded in
April 1989 to continue the product devel-
opment. The two major missing compo-
nents in the system at that time were a
DBMS-independent DD/D Builder Tool
and a system administration utility. These
are currently being completed and pro-
fessional documentation is being written.
Additional DBMS interfaces are being de-
veloped under contract.

The biggest challenge faced by the devel-
opers of Mermaid has been error handling.
Mermaid runs above many layers of
DBMS, operating system, and network pro-
tocol. Each layer has many error conditions
that may cause errors in other layers. There
is no clear definition of all errors that can
occur in each layer or how other layers
respond to errors. When an error does oc-
cur, it is difficult for the Mermaid code to
understand the source of the error and po-
tential cures. It is also difficult to describe
some errors to the user.

Another major problem has been coping
with new releases of the underlying soft-
ware. Mermaid frequently encounters prob-
lems when new releases of the DBMS,
operating system, or network are installed.
This poses problems for support of a het-
erogeneous database system because re-
lease control can be difficult in such an
environment, and testing of all combina-
tions of underlying software is generally not
possible.

3.6 MULTIBASE (Xerox Advanced
Information Technology’)

3.6.1 Background on MULTIBASE

MULTIBASE [Landers and Rosenberg
19821 provides a uniform, integrated inter-
face for retrieving data from preexisting,
heterogeneous, distributed databases. It
was designed to allow the user to reference
data in these databases with one query
language over one database description
(schema). By presenting a globally inte-

1 Formerly the Advanced Information Technology
Division of Computer Corporation of America.

grated view of information, MULTIBASE
allows the user to access data in multiple
databases quickly and easily. Because there
is an integrated schema and a single query
language, the user has to be familiar with
only one uniform interface instead of nu-
merous local system interfaces.

The MULTIBASE project was initiated
in 1980 to develop a software system that
would enable organizations to achieve in-
tegrated data access without replacing ex-
isting databases. The system has three
major design objectives. First, it is a general
system that is not designed for any specific
application area. It can be used without
making changes to existing databases and
does not interfere with existing application
programs. Second, MULTIBASE has been
designed to incorporate a wide range of data
sources. These data sources encompass the
major classes of DBMSs (hierarchical, net-
work, relational) as well as file systems
and custom built DBMSs. Third, MULTI-
BASE has been designed to minimize the
cost of adding a new data source. The sys-
tem is largely description driven, and
its modular architecture minimizes the
amount of custom software that must be
developed for each new DBMS.

3.6.2 MULTIBASE System Characteristics

MULTIBASE uses a data definition and
manipulation language called DAPLEX,
which is based on the functional data model
[Landers et al. 1984; Shipman 19811. Be-
cause the functional model is rich enough
to represent relational, hierarchical, and
network database schemata directly, the
need to translate these schemata and their
corresponding operations into a strictly re-
lational model has been eliminated. The
system supports ad-hoc query access
through several interactive interfaces and
an Ada application program interface.

In the terminology of [Sheth and Larson
19901, MULTIBASE is a tightly coupled
federated system that provides for the def-
inition of multiple local schemata and mul-
tiple federated schemata, or views. Local
schemata describe the data available at an
individual local DBMS. Views describe in-
tegrations of the data described in local

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems 259

schemata. Users can query any combina-
tion of local schemata or views, and multi-
ple schemata or views can be referenced in
a single query. From the user’s perspective,
views provide complete location transpar-
ency. The MULTIBASE view definition
language supports horizontal and vertical
fragmentation and data mapping of the
data contained in the individual local da-
tabases. MULTIBASE makes no restric-
tions on the queries that can be processed
over views. The current version of the sys-
tem does not, however, support updates.
Each MULTIBASE location maintains
its own directory of local schemata and
views.

The MULTIBASE view mechanism is
also used to resolve data incompatibilities
[Katz et al. 19811 that frequently arise
when separately developed and maintained
databases are accessed conjointly. In-
compatibilities include (a) differences in
naming conventions, underlying data
structures, representations, or scale,
(b) missing data, and (c) conflicting data
values. When defining a view, the database
administrator applies knowledge of the lo-
cal databases to determine what incompat-
ibilities might arise and what rules should
be used to reconcile them. The rules are
included in the view definition, after which
they are followed automatically by the sys-
tem in generating answers to queries.

MULTIBASE performs query optimiza-
tion at both the global and local levels
[Dayal et al. 1981,1982]. At the global level,
the system creates query execution strate-
gies that attempt to minimize the amount
of data moved between sites and to maxi-
mize the potential for parallel processing
that is inherent when multiple distributed
databases are accessed. At the local level,
the system attempts to minimize the
amount of time to retrieve data from a local
DBMS by taking full advantage of the local
DBMS query language, physical database
organization, and fast access paths.

3.6.3 MUL TIBASE System Architecture

As shown in Figure 6, a MULTIBASE sys-
tem consists of three major types of com-
ponents: the Global Data Manager (GDM),

one or more Local Database Interfaces
(LDIs), and the Internal DBMS.

The GDM is the central component of
MULTIBASE, providing query manipula-
tions that require global knowledge. These
operations include translation of queries
expressed over views into queries expressed
over individual local databases, modifica-
tion of queries to compensate for operations
that cannot be performed at the individual
local databases, optimization, and genera-
tion of plans for the execution of the user’s
query. All query manipulation in the GDM
is performed in an internal form of
DAPLEX. The GDM is responsible for
management of the global directory, in-
cluding views, local schemata, authoriza-
tion information, and descriptions of local
DBMS capabilities.

Local Database Interfaces are responsi-
ble for receiving queries that have been
generated by the GDM, translating these
queries from DAPLEX into a form that is
acceptable to the local DBMS and pass-
ing these queries to the local DBMS to
be processed. The LDI receives the data
from the local DBMS, translates it into
MULTIBASE standard format, and re-
turns it to the GDM. A MULTIBASE sys-
tem can contain multiple LDIs.

LDIs are only developed for each new
local DBMS. The GDM transmits to the
LDI the local schemata for the LDI’s da-
tabases. The local schema contains the in-
formation required by the LDI to generate
queries against the individual local data-
bases. In general, the GDM does not have
to be modified to add a new local database
or DBMS. The information about the
LDI and local DBMS that is required by
the GDM is stored by the GDM in the
directory.

The Internal DBMS is a DAPLEX
DBMS that is used by the GDM for any
processing that cannot be performed at an
individual local DBMS. This provides
MULTIBASE users with the full power of
the DAPLEX query language against any
local DBMS. Any operation that cannot be
performed by a local DBMS is performed
transparently by the Internal DBMS using
data that has been retrieved by the LDI
under direction of the GDM. The Internal

ACM Computing Surveys, Vol. 22, No. 3, September 1990

260 l Thomas et al.

DAPLEX
Global Result

Local
Query

DAPLEX

GLOBAL
DATA INTERJ

MANAGER - DBMS

LOCAL LOCAL
DATABASE l ee DATABASE

INTERFACE1 INTERFACEn

.e

Local
Query

Figure 6. MULTIBASE component architecture.

DBMS can also store auxiliary databases
that are used to support resolution of data
incompatibilities. For example, auxiliary
databases can contain new data that are
not available in any local databases, statis-
tics used to determine which data values
should be used in case of conflict, and con-
version tables that provide a means of per-
forming data transformations that cannot
be done using simple formulas.

3.6.4 MULTIBASE Status and Future Plans

A MULTIBASE prototype system has been
implemented in Ada. It supports the capa-
bilities described above except that only a
portion of the global optimization design
has been implemented. The GDM software
is about 350,000 Ada source lines. It exe-
cutes on a VAX under the VMS operating
system. LDIs have been developed for five
DBMSs. They provide access to ORACLE
and RIM systems executing under the VMS
operating system and to FOCUS, System
2000, and DMR (a hierarchical DBMS de-
veloped by the U.S. Army) systems execut-
ing under the MVS operating system. The
LDIs vary in size from 7000 to 20,000 Ada
source lines. To minimize the cost of adding
a new DBMS to MULTIBASE, a set of

ACM Computing Surveys, Vol. 22, No. 3, September 1990

LDI building blocks has been created.
These building blocks implement LDI pro-
cessing that is common to all LDIs and
greatly reduce the amount of new software
required to create an LDI.

MULTIBASE is currently being used as
a component of two systems. One system is
a prototype for supporting design, manu-
facturing, and logistics of large mechanical
systems. The other system is a pilot dem-
onstration of the utility of distributed het-
erogeneous data management for providing
integrated access to logistics databases.
Both of these efforts require MULTIBASE
to interface to existing databases that are
not based on the relational model.

Several lessons have been learned during
this project that will provide direction for
future enhancements to MULTIBASE.
Two of the most important of these are the
difficulties in handling local system pecu-
liarities and the need for automated tools
to support the creation and maintenance of
MULTIBASE schemata.

Although MULTIBASE has proved ef-
fective at supporting most of the data man-
agement capabilities of a wide range of
DBMSs, each DBMS has had its own pe-
culiarities (i.e., special data types, opera-
tions, or optimization heuristics) that have

Heterogeneous Distributed Database Systems 261

turned out to be difficult to support. This
has pointed out the need for a more ex-
tensible framework, possibly object ori-
ented, that would allow new capabilities
to be readily accommodated within the
MULTIBASE system.

Experience has indicated that automated
tools are needed for administering the dic-
tionary of a system that is integrating da-
tabases from many different organizations.
Tools are needed to assist both in creating
MULTIBASE schemata and in maintain-
ing consistency as changes occur to the
local databases.

3.7 SYBASE (Sybase, Inc.)

3.7.1 Background on SYBASE

Sybase, Inc., was founded in 1984 with the
goal of bringing a high-performance distrib-
uted RDBMS to the market. The initial
production versions of the SYBASE SQL
Server and the SQL Toolset (application
development tools) were shipped in June
1987, and there are currently more than
1000 customers using the product on nearly
30 different hardware platforms. Using a
client/server architecture, SYBASE was
designed to handle on-line, transaction-ori-
ented applications that require high perfor-
mance, continuous availability, and data
integrity that cannot be circumvented.

The need to integrate a variety of client
applications with multiple sources of data
is a clear requirement in today’s commer-
cial market. Hence, in September 1989 Sy-
base introduced the Open Server, a product
that extends the SYBASE distributed ca-
pabilities to heterogeneous data sources.
This product complements the Open
Client, a client Application Programming
Interface (API) used to send SQL or Re-
mote Procedure Calls (RPCs) to an SQL
Server. Together they form the Client/
Server Interfaces, the basis of the SYBASE
approach to heterogeneous distributed
databases.

3.7.2 SYBASE System Characteristics

There are two broad categories of distrib-
uted databases: on line and decision sup-

port. Decision support applications tend to
read-but not update-remote data. They
are mostly concerned with presenting a de-
cision maker with a unified, single system
image of data that is distributed throughout
the enterprise. On-line applications, by
contrast, involve remote updates and have
a strict requirement to maintain local site
autonomy. Given the orientation of the
SYBASE system to on-line applications,
SYBASE is an interoperable system, or
a “loosely coupled” federated system in
the terminology of Sheth and Larson
[1990]. SYBASE attempts to open the ar-
chitecture as widely as possible to allow any
database, application, or service to be in-
tegrated into the client/server architecture
in a heterogeneous environment. No global
data model or schema is enforced. Rather,
distributed operations can be supported via
application programming or via database-
oriented RPCs between SQL Servers. This
provides a high degree of site autonomy. At
the same time, the SQL Server provides
full DBMS support at each location and
“prepare to commit” support for a two-
phase commit protocol to guarantee re-
coverability for multisite updates [Gray
19781.

SYBASE is based on the relational model
and supports both interactive and pro-
grammed access to the SQL Server or any
Open Server application. The basic query
language is SQL. Multiple SQL statements
may, however, be augmented with program-
ming constructs such as conditional logic
(if, else, while, etc.), procedure calls and
parameters, and local variables. These may
be combined into a single database object
called a stored procedure. A procedure is
an independently protected object and (as
in the case of a view) can override the
protection of the tables it references. Thus,
it is possible to grant execution privileges
to a procedure but disallow direct access to
the data it references. Procedures can re-
turn rows of data and error messages,
and they can return values back into pro-
gramming variables in the application
program.

The SQL Server also supports triggers
as independent objects in the database
[Date 19831. These have the capabilities

ACM Computing Surveys, Vol. 22, No. 3, September 1990

262 l Thomas et al.

of procedures, with three important exten-
sions:

(1) They cannot be directly executed but
rather are executed as a side effect of
an SQL delete, insert, or update.

(2) A trigger is an extension of the user’s
current SQL statement. It can roll back
or modify the results of a user’s trans-
action.

(3) Triggers can view the data being
changed.

In traditional centralized database sys-
tems, users of on-line applications are not
given direct update access to a database but
rather communicate with an application
program that protects the database from
the user. This common approach can be
called “application-enforced integrity.”
The legality of any update is determined
principally by rules enforced by the appli-
cation program. Application-enforced in-
tegrity is, however, a flawed approach in
heterogeneous distributed databases, where
the application may be written in a differ-
ent department or in a different city from
the DBA whose database is being updated.

A better alternative in a heterogeneous
distributed database is to enforce data in-
tegrity within the database itself. Under
this alternative, an application at a remote
site communicates directly with a database
that has sufficient richness of semantics to
decide by itself whether the transaction
violates any integrity rules. Stored proce-
dures and triggers provide this capability.

The SYBASE Open Server provides a
consistent method of receiving SQL re-
quests or remote procedure calls from
an application based on the SYBASE
SQL Toolset or an application using the
SYBASE Open Client Interface and pass-
ing them to a non-SYBASE database or
application. Whereas Open Client gives
users the flexibility to use a variety of front-
end packages or applications for accessing
and updating data, the SYBASE Open
Server allows access to and updating of
foreign (non-SYBASE) databases and ap-
plications.

At run time an application program is-
sues a database RPC to the distributed
database system, which consists of any

combination of SQL Servers or Open Serv-
ers. If the data are stored in a non-SYBASE
source, the Open Server provides the nec-
essary data type and network conversions
to allow the Open Client to process the
returned data.

SYBASE supports distributed updates
that span multiple locations. A two-phase
commit protocol, coded in the application,
enforces distributed transaction control
across multiple SQL Servers.

3.7.3 SYBASE System Architecture

As shown in Figure 7, The SYBASE Open
Server consists of two logical components.
A server network interface manages the
network connection and accepts requests
from client programs running Open Client
or database RPCs from an SQL Server.
Event-driven server utilities in the Server-
Library provide the logic to ensure that
client requests are passed to the appropri-
ate User Developed Handler and are com-
pleted properly. They also ensure that the
returned data are correctly formatted for
the client program. This enables a SY-
BASE client application to request pro-
cessing and exchange information with any
application or data management system.
The SYBASE Network Interface compo-
nent of the Open Server appears to the
developer and user exactly as an SQL
Server interface. It

l Supports multiple connections from mul-
tiple clients or SQL Servers

l Supports multiple logical connections on
a single network connection to increase
network efficiency

l Shields the user from knowledge of un-
derlying networking

l Passes returned data a record at a time
in exactly the same format as an SQL
Server

The Server-Library enormously simpli-
fies the coding of distributed multiuser
server applications. The utilities supplied
by SYBASE provide the logic to handle
basic server events such as establishing or
ending client connections and starting or
stopping processes. SYBASE also provides

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Open Client

Heterogeneous Distributed Database Systems 9 263

SYBASE Application

SQL Server 1

Figure 7. SYBASE open client/server architecture.

utilities to handle SQL and database RPC
requests. These utilities are designed to be
extended by user-developed handlers. The
handlers provide the logic to transmit the
RPC or SQL request to the target applica-
tion or data management system in a pre-
defined predictable way. The user can also
define additional utilities to handle events
particular to an application or environ-
ment. The combination of SYBASE-
supplied and user-developed utilities pro-
vide the flexibility to develop the appropri-
ate server environment for any application
or data source. Through Server-Library the
developer can

l Manage the task queue
l Pass requests and parameters to foreign

applications or data management sys-
tems through the user handler

l Process responses from user handlers-
normal, error, and so on

l Collect returned data or parameters from
the user handler

l Convert returned data to format compat-
ible with client application

3.7.4 SYBASE Status and Future Plans

The SYBASE Open Server and Release 4.0
of the SYBASE SQL Server, which pro-

USER DEVELOPED
HANDLER

HETEROGENEOUS
DATABASE OR
APPLICATION

vides a server-to-server RPC capability,
have been commercially available since
September 1989. They are in use at numer-
ous customer sites performing on-line
applications.

The total effort involved in the develop-
ment of these products is hard to measure.
It would be fair to say, however, that the
development of the SQL Server took more
than 30 staff years, and the Open Server
and RPC enhancements to the SQL Server
added approximately 3 staff years. This
includes engineering effort only and does
not include quality assurance, documenta-
tion, and so on. Future plans for the prod-
uct include moving the two-phase commit
protocol into the SQL Server and extending
its capabilities to include heterogeneous
systems. Access to distributed SQL Servers
will be made transparent by means of syn-
onyms and a distributed data dictionary.

4. SUMMARY

As can be seen from the above system de-
scriptions, significant progress has been
made in developing heterogeneous distrib-
uted database systems for production use.
It is, however, certainly not yet possible to
buy a system off the shelf that will link all
of the popular data models and database

ACM Computing Surveys, Vol. 22, No. 3, September 1990

264 . Thomas et al.

management systems and provide full sup-
port for schema integration, distributed
query management, and distributed trans-
action management. Moreover, although
the architectural principles are becoming
well understood for building a custom sys-
tem that provides distributed query man-
agement, the effort required actually to
implement such a system is high. In addi-
tion, implementing heterogeneous distrib-
uted transaction management is not yet
well understood.

There are commercially available sys-
tems that bridge a wide variety of types of
computers, operating systems, and net-
works. Gateways are being developed from
these systems to various other database
management systems based on different
data models. Some of these commercial sys-
tems offer distributed query management
and some offer distributed transaction
management, but none offer both, although
that is expected to change in the near fu-
ture. So far these systems offer only limited
schema integration capabilities, without
system support for horizontal or vertical
fragmentation or replicated data, although
this is also expected to change in the near
future.

Custom systems have been built that en-
compass a variety of types of computers,
operating systems, networks, database
management systems, and data models.
Some of these systems have rather sophis-
ticated schema integration and distributed
query management capabilities. They are,
however, just beginning to develop distrib-
uted transaction management.

It is important to remember that this is
a very fluid landscape. This paper was writ-
ten in late 1989, and there will undoubtably
be advances between that time and the time
it appears in print. There will undoubtably
be even more advances in the months to
follow. Existing systems will improve their
capabilities and new systems and vendors
will appear.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to the
editors and the anonymous referees for the many

helpful suggestions that significantly improved this
paper.

REFERENCES

BARKMEYER, E., MITCHELL, M., MIKKILINENI, K.,
SU, S. Y. W., AND LAM, H. 1986. An architec-
ture for an integrated manufacturing data admin-
istration system. NBSIR 863312, National
Bureau of Standards, Gaithersburg, Md.

BOEING COMPUTER SERVICES 1985. Boeing RIM
User’s Manual. Version 7.0, 20492-0502, Boeing
Computer Services, Seattle, Wash.

BREITBART, Y. J., AND SILBERSCHATZ, A.
1988. Multidatabase systems with a decentral-
ized concurrency control scheme. IEEE Comput.
SOC. D&rib. Proc. Tech. Comm. Newsletter 10, 2
(Nov.), 35-41.

BREITBART, Y. J., AND TIEMAN, L. R. 1985. ADDS:
Heterogeneous distributed database system. In
Distributed Data SharinE Svstems. F. Schreiber - -
and W. Litwin, Eds. North Holland Publishing
Co., The Netherlands, pp. 7-24.

BREITBART, Y. J., OLSON, P. L., AND THOMPSON,
G. R. 1986. Database integration in a distrib-
uted heterogeneous database system. In Proceed-
ings of the Znternationnl Conference on Data
Engineering (Los Angeles, CA, Feb. 5-7). IEEE,
Washington, D.C., pp. 301-310.

BREITBART, Y. J., SILBERSCHATZ, A., AND THOMP-
SON, G. R. 1987. An update mechanism for mul-
tidatabase systems. Data Eng. 10, 3 (Sept.),
12-18.

BREITBART, Y. J., SILBERSCHATZ, A., AND THOMP-
SON, G. R. 1989a. Transaction management in
a multidatabase environment. Integration of Zn-
formation Systems: Bridging Heterogeneous Dn-
tabases. A. Gupta, Ed. IEEE Press,-New York,
pp. 135-143.

BREITBART, Y. J., SILBERSCHATZ, A., AND THOMP-
SON, G. R. 1989b. Reliable transaction manage-
ment in a multidatabase system. Submitted for
publication.

CERI, S., AND PELAGATTI, G. 1984. Distributed Da-
tabases: Principles and Systems. McGraw-Hill,
New York.

CHEN, A. L. P., BRILL, D., TEMPLETON, M. P., AND
Yu, C. T. 1989. Distributed query processing in
a multiple database system. ZEEEJ. Select. Areas
Commun. 7,3 (Apr.), 390-398.

CHUNG, C. W. 1987. DATAPLEX: A heterogeneous
distributed database management system. Re-
search Publication GMR-5973, General Motors
Research Laboratories (Sept.).

CHUNG, C. W. 1990. DATAPLEX: An access to
heterogeneous distributed databases. Commun.
ACM 33, 1 (Jan.), 70-80. (With corrigendum in
Commun. ACM 33, 4 (Apr.), p. 459).

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Heterogeneous Distributed Database Systems

CHUNG, C. W., AND IRANI, K. B. 1986. An optimi-
zation of queries in distributed database systems.
J. Parall. D&rib. Comput. 3, 2 (June), 137-157.

distributed databases. Tech. Rep. CCA-81-06.
Computer Corporation of America (May).

KRISHNAMURTHY, V., SW, S. Y. W., LAM, H., MITCH-
ELL, M., AND BARKMEYER, E. 1987. A distrib-
uted database architecture for an integrated
manufacturing facility. In Proceedings of the Zn-
ternational Conference on Data and Knowledge
Systems for Manufacturing and Engineering
(Oct.), Computer Society Press of the IEEE, pp.
4-13.

DATE, C. J. 1983. An Introduction to Database Sys-
tems. Vol. II. Addison-Wesley, Reading, Mass.

DAYAL, U., GOODMAN, N., LANDERS, T., OLSEN, K.,
SMITH, J. AND YEDWAB, L. 1981. Local query
optimization in MULTIBASE: A system for het-
erogeneous distributed databases. Tech. Rep.
CCA-81-11, Computer Corporation of America
(Oct.).

DAYAL, U., LANDERS, T., AND YEDWAB, L.
1982. Global optimization techniques in MUL-
TIBASE. Tech. Rep. CCA-82-05, Computer Cor-
poration of America (Oct.).

ELMAGARMID, A. K. 1986. A survey of distributed
deadlock detection algorithms. SZGMOD Rec. 15,
3 (Sept.), 37-45. -

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND
TRAIGER, I. L. 1976. The notions of consistency
and predicate locks in a database system. Com-
mum ACM 19, 11 (Nov.), 624-633.

GLIGOR, V. D., AND POPESCU-ZELETIN, R.
1985. Concurrency control issues in distributed
heterogeneous database management systems.
Distributed Data Sharing Systems. F. Schreiber
and W. Litwin. Eds. North-Holland Publishing
Co., The Netherlands, 43-56.

GRAY, J. 1978. Notes on data base operating systems.
In Operating Systems: An Advanced Course, R.
Bayer, R. M. Graham, and G. Seegmuller, Eds.
Springer-Verlag, New York, pp. 393-481.

INCRES 1986. Zngres. Relational Technology, Inc,

Is0

Is0

Is0

Is0

Alameda, Calif. 94501 (Jan.).
-.

1982. ISO/TC97: Draft International Standard
ZSO/DZS 7489: Information Processing System.-
Open Systems Interconnection-Basic Reference
Model. International Organization for Standard-
ization.

1987a. International Standard IS0 8824: Znfor-
mation Processing Systems-Open Systems Znter-
connection-Specification of Abstract Syntax
Notation One (ASN.Z). International Organiza-
tion for Standardization.

1987b. International Standard IS0 8825: Znfor-
mation Processing Systems-Open Systems Znter-
connection-Basic &coding kules- for Abstract
Syntax Notation One (ASN.1). International Or-
ganization for Standardization.

1989. Draft proposed international standard
9579: Information processing systems-Open
systems interconnection-Generic remote data-
base access service and protocol. M.A. Corfman,
Ed., unpublished document ISO/IEC JTCl SC21
WG3 N845.

265

LANDERS, T., AND ROSENBERG, R. 1982. An over-
view of MULTIBASE. In Distributed Databases,
H.-J. Schneider. Ed. North Holland Publishing
Company, The fietherlands, pp. 153-184. -

LANDERS, T., Fox, S., RIES, D., AND ROSENBERG, R.
1984. DAPLEX User’s Manual. Tech. Rep.
CCA-84-01, Computer Corporation of America.

LE NOAN, Y. 1988. Object-oriented programming ex-
ploits AI. Comput. Technol. Reu. (Apr.).

LEE, W. F., OLSON, P. L., THOMAS, G. F., AND
THOMPSON, G. R. 1988. A remote user interface
for the ADDS multidatabase system. In Proceed-
ings of the 2nd Oklahoma Workshop on Applied
Computing (Tulsa, Okla. Mar. 18), The Univer-
sity of Tulsa, pp. 194-204.

LIBES, D. 1985. User-level shared variables. In Pro-
ceedings of the Summer 1985 USENZX Confer-
ence (PO&and, Oregon, June), The USEfiIX
Association, Berkeley, Calif.

MITCHELL, M., AND BARKMEYER, E. 1984. Data dis-
tribution in the NBS AMRF. In Proceedings of
the ZPAD ZZ Conference (Denver, Colo., April),
NASA Conference Publication 2301, 211-227.

NANZETTA, P. 1984. Update: NBS research facility
addresses problems in set-ups for small batch
manufacturing. Znd. Eng. 16, 6 (June), 68-73.

SHETH, A., AND LARSON, J. A. 1990. Federated da-
tabases: Architectures and integration. ACM
Comput. Suru. 22, 4 (Dec.).

SHIPMAN, D. 1981. The functional data model and
the data language DAPLEX. ACM Trans. Data-
base Syst. 6, 1 (Mar.), 140-173.

STONEBRAKER, M., Ed. 1986. The ZNGRES Papers:
Anatomy of a Relational Database System.
Addison-Wesley, Reading, Mass.

Su, S. Y. W. 1985. Modeling integrated manufactur-
ing data using SAM*. In Proceedings of GZ Fach-
tagung, Karlsruhe (Mar.). (Reprinted as
Datenbank-Systeme fur Buro, Technik und
Wissenschaft. Springer-Verlag, New York.)

Su, S. Y. W., LAM, H., KHATIB, M., KRISHNAMUR-
THY, V., KUM~R, A., MALIK, S. MITCHELL, M.,
AND BARKMEYER. E. 1986. The architecture
and prototype implementation of an integrated
manufacturing database administration system.
In Proceedings of Spring COMPCON.

KATZ, R., GOODMAN, N., LANDERS, T., SMITH, J., TEMPLETON, M., WARD P., AND LUND, E.
AND YEDWAB, L. 1981. Database integration 1987b. Pra$matics of access control in Mer-
and incompatible data handling in MULTI- maid. Q. Bull. IEEE Comput. SOC. Tech. Commit-
BASE: A system for integrating heterogeneous tee Data Eng. 10, 3 (Sept.), 33-38.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

266 l Thomas et al.

TEMPLETON, M., BRILL, D., CHEN, A., DAO, S., TRAIGER, I. L., GRAY, J. N., GALTIERI, C. A.. AND
LUND, E., MACGREGOR, R., WARD, P.
1987a. Mermaid: A front-end to distributed het-
erogeneous databases. Proc. IEEE 75, 5 (May,
Special Issue on Distributed Database Systems),
695-708.

LINDSAY, B. G. 1982. Transactions and cbnsis-
tency in distributed database management sys-
tems. ACM 2’ran.s. Database Syst. 7, 3 (Sept.),
323-342.

THOMPSON, G. R. 1987. Multidatabase concurrency Tu, J. S., AND HOPP, T. H. 1987. Part geometry
control. Ph.D. dissertation, Oklahoma State Uni- data in the AMRF. NBSIR 87-3551, National
versity. Bureau of Standards, Gaithersburg, Md.

Received November 1988; final revision accepted June 1990.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

