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INTRODUCTION 

The objectives of this survey paper are to 
provide insight into the kinds of heteroge- 
neous distributed database capabilities 
available in off-the-shelf systems and to 
describe the practicalities of in-house de- 
velopment of their capabilities; that is, 
what can be achieved and what approaches 
are likely to be promising. 

This paper takes a broad view of the 
terms “distributed”, “heterogeneous”, and 
“production use.” A database system is con- 
sidered to be distributed if it provides access 
to data located at multiple (local) sites in a 
network, even if it does not provide full 
facilities for schema integration, distrib- 
uted query management, and/or distributed 
transaction management. It is considered 
to be heterogeneous if the local nodes have 
different types of computers and operating 
systems, even if all local databases are 
based on the same data model and perhaps 
even the same database management sys- 
tem. (This definition of heterogeneous is 
admittedly at odds with that commonly 
used by the research community, where the 

term is typically used to imply multiple 
data models.) It is considered to be for 
production use if it has been, or is being, 
developed for that purpose, even if it is 
currently only in an advanced prototype 
state. 

Although a number of specific database 
systems are described or mentioned in this 
paper, this paper is not intended to contain 
a definitive list of heterogeneous distrib- 
uted database systems for production use 
or to endorse or recommend any particular 
system. The information about specific sys- 
tems may or may not be entirely accurate, 
and it is likely that other systems on the 
market, in production use, or under devel- 
opment have capabilities equaling or ex- 
ceeding those mentioned here. 

Section 1 discusses different types of dis- 
tributed database capabilities that can be 
provided by different systems. Section 2 
describes the status of remote database ac- 
cess standards, a key factor in the ease of 
developing heterogeneous distributed da- 
tabase systems. Section 3 describes the 
characteristics and architecture of a sam- 
pling of existing heterogeneous distributed 
database systems developed for production 
use. These descriptions are current as of 
late 1989, written by individuals who have 
been involved in the development of these 
systems. Section 4 gives a brief summary 
of the state of the art. 

1. HETEROGENEOUS DISTRIBUTED 
DATABASE CAPABILITIES 

Different types of capabilities can be 
provided by heterogeneous distributed 
database systems. They include schema 
integration, distributed query processing, 
distributed transaction management, ad- 
ministrative functions, and coping with 
different types of heterogeneity. Schema 
integration has to do with the way in which 
users can logically view the distributed 
data. Distributed query management deals 
with the analysis, optimization, and exe- 
cution of queries that reference distributed 
data. Distributed transaction management 
deals with the atomicity, isolation, and 
durability of transactions in a distributed 
system. Administrative functions include 
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such things as authentication and authori- 
zation, defining and enforcing semantic 
constraints on the data, and manage- 
ment of data dictionaries and directories. 
Heterogeneity can include differences in 
hardware, operating systems, communica- 
tions links, database management system 
(DBMS) vendors, and/or data models. 
These are all important aspects of distrib- 
uted data management. In considering 
them, it is important to recognize there is 
no “ideal” set of capabilities for all envi- 
ronments or applications. A particular 
capability may be invaluable in certain sit- 
uations while being totally unsuitable in 
others. 

1.1 Schema Integration 

Each local database has a local schema, 
describing the structure of the data in that 
database. Each user has a user view, de- 
scribing that portion of the distributed data 
that is of interest to the user, possibly re- 
organized to meet the user’s requirements. 
There are two general approaches to the 
problem of providing mappings between 
user views and the local schemata: 

(1) 

(2) 

All of the local schemata may be inte- 
grated into a single global schema that 
represents all data in the entire distrib- 
uted system. All user views are derived 
from this global schema. 
Various portions of various local sche- 
mata may be integrated into multiple 
federated schemata. These federated 
schemata may correspond closely to 
user views, or user views may be further 
derived from these federated schemata. 

In either approach one is faced with schema 
integration-the process of developing a 
conceptual schema that encompasses a 
collection of local schemata. 

If the local databases are based on differ- 
ent data models and/or use different names 
or representations for particular data ele- 
ments, the usual first step is for each local 
schema to be translated into an equivalent 
schema in some common data model using 
common names and representations. Thus, 
in this case one is also faced with a schema 
translation problem. 

The simplest form of schema integration 
is schema union, whereby a conceptual 
schema seen by distributed users is the 
disjoint union of local schemata or perhaps 
of subsets or views of local schemata. In 
the simplest form of this, a data item in the 
conceptual schema is identified by the 
name of a local database concatenated with 
the name of an item in the local database. 
More commonly, some type of aliasing 
capability is provided. 

More sophisticated capabilities that can 
be provided include the following: 

Replication, whereby data items in differ- 
ent local databases may be identified as 
copies of each other 
Horizontal fragmentation, whereby data 
items in different local databases may be 
identified as logically belonging to the 
same table or entity set in the integrated 
schema 
Vertical fragmentation, whereby data 
items in different local databases may be 
identified as logically representing the 
same row or entity in the integrated 
schema but containing different attri- 
butes for the row or entity 
Data mapping, whereby data types or 
data values are converted for conformity 
with each other 

As an example of data mapping, one local 
database might store temperatures as float- 
ing point numbers representing degrees 
Celsius, and another local database might 
store temperatures as character string rep- 
resentations of degrees Fahrenheit. To in- 
tegrate these schemas, one might want to 
map degrees Fahrenheit to degrees Celsius 
and map character string representations 
of numbers to floating point representa- 
tions, or vice versa. 

1.2 Distributed Query Management 

Distributed query management provides 
the ability to combine data from different 
local databases in a single retrieval opera- 
tion (as seen by the user). This capability 
may or may not be provided by a distributed 
database system. In some systems, an ap- 
plication needing data from multiple local 
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databases would explicitly send queries to 
the individual databases rather than pre- 
senting a single distributed query to a dis- 
tributed query manager. If distributed 
query management is provided, there are 
many possible approaches to optimizing the 
heterogeneous distributed queries and 
managing their execution. To complicate 
the optimization problem, there may be 
great differences in the speeds of the com- 
munications links, the speeds and work- 
loads of the local processors, and the nature 
of the data operations available at the lo- 
cal sites. Depending on the system char- 
acteristics, it may be desirable to exploit 
parallelism in the execution of queries. 
Replicated and/or fragmented data also 
add complexity. One of the simpler ap- 
proaches to query management is to move 
all the desired data to the query site and 
combine them there. More sophisticated 
approaches may consider a wide range of 
algorithms and take account a wide range 
of factors in evaluating them [Chen et al. 
19891. 

1.3 Distributed Transaction Management 

Distributed transaction management pro- 
vides the ability to read and/or update data 
at multiple sites within a single transaction, 
preserving the transaction properties of 
atomicity, isolation, and durability [Ceri 
and Pelagatti 19841. This capability may or 
may not be provided by a distributed data- 
base system. If it is provided, there are two 
aspects provided: concurrency control pro- 
tocols and commit protocols. 

Local concurrency control protocols en- 
sure that the execution of local transac- 
tions, whether originating at the local 
database or coming from a remote site, 
meet the isolation standards of the local 
system. In most cases this means the exe- 
cution is serializable; that is, the actual 
execution is equivalent to the serial execu- 
tion of the transactions in some order [Es- 
waran et al. 19761. Distributed concurrency 
control protocols are designed to ensure 
that distributed transactions are globally 
serializable; that is, that the serializations 
of the local components at all the databases 
are compatible with some global serializa- 

tion of all the distributed transactions 
[Traiger et al. 19821. 

Local commit protocols guarantee atom- 
icity and durability of local transactions; 
that is, that either all of the a&ions of a 
local transaction complete and commit or 
none of them do. Distributed commit pro- 
tocols guarantee global atomicity and 
durability; that is, that either all of the 
local subtransactions of a distributed 
transaction complete and commit or none 
of them do. 

These distributed protocols carry an op- 
erational cost, as well as an implementation 
cost, since a failure at one site may leave 
locked data at other sites unavailable for 
extended periods of time. Thus, there can 
be advantages to not having them if they 
are not needed. In some situations the se- 
mantics of the databases and applications 
may make both distributed concurrency 
control and distributed commit protocols 
unnecessary. An example of this is a collec- 
tion of independently maintained reference 
databases (e.g., restaurant ratings or biblio- 
graphic listings), with a capability for users 
to submit queries that form the union of 
information from the different databases in 
the collection. Since the databases are 
being independently updated and since 
users are typically interested in partial in- 
formation, even if one of the databases is 
temporarily unavailable, there is no need 
to ensure global serializability or global 
atomicity. In other situations, distributed 
commit protocols, but not distributed con- 
currency control, may be needed. An ex- 
ample of this is a travel reservation system 
in which reservations for different re- 
sources are independently managed in dif- 
ferent databases. The order in which 
reservations for different resources are in- 
terleaved is not critical, so distributed con- 
currency control is not necessary. A user 
would, however, often want to package a 
number of interdependent reservations into 
a single transaction and require that either 
they all commit or none of them do. 

In other situations, both distributed con- 
currency control and commit protocols may 
be needed. An example is a banking system 
in which accounts at different branches are 
maintained in different databases. Global 
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atomicity is needed to ensure that funds 
transfers between branches are handled 
correctly. Global serializability is needed to 
ensure that audit programs run correctly, 
even when run concurrently with funds 
transfer programs. 

1.4 Administration 

A number of administrative functions, such 
as authorization of users, definition and 
enforcement of semantic integrity con- 
straints on the data, and maintenance of 
schema information, must be performed for 
any database system. In a heterogeneous 
distributed database system, there are 
many choices as to the degree of centrali- 
zation and transparency of these adminis- 
trative functions. 

1.4.1 Authorization Management 

At one extreme, authorization can be com- 
pletely decentralized, with each user having 
a user id at each local database and permis- 
sions granted by local database adminstra- 
tors and enforced by local database 
management systems. At the other ex- 
treme, authorization can be completely 
centralized, with each user having a sys- 
tem-wide user id and permissions granted 
on a system-wide basis by a system-wide 
database administrator and enforced by a 
system-wide distributed query manager. An 
intermediate possibility is to have system- 
wide user ids but with permissions granted 
and enforced at local databases. 

One potential advantage of centralized 
permissions is that a user can be given 
access to certain distributed views while 
being denied direct access to the underlying 
local data. For example, one might have a 
table in one database that tells which em- 
ployees are assigned to which division of a 
company and another table in another da- 
tabase that gives the salary of each em- 
ployee. One might want certain users to 
have access to the average salaries in the 
different divisions of the company but not 
to the salaries of individual employees. 
With centralized permissions, it is straight- 
forward to define a view containing the 
average salary information (obtained by 

taking the join of the two local tables and 
applying aggregation and projection oper- 
ations) give the users permission to access 
the view but not permission to access the 
underlying employee salary table. With 
only local permissions, the only choices are 
to give the user access to the employee 
salary table or not to. There is no mecha- 
nism for preventing access to the salary 
table but granting access to a view derived 
from a join of the salary table with a table 
in another database. 

1.4.2 Semantic Integrity Management 

Some database management systems pro- 
vide capabilities for specifying and enforc- 
ing semantic integrity rules for the 
database instead of leaving that function to 
the applications programmers. These in- 
clude such things as rules for allowed data 
values and existence dependencies. In the 
context of heterogeneous distributed data- 
bases, this can be done either centrally, 
through a global conceptual schema, or lo- 
cally, through the individual local schemas. 
One potential advantage of the centralized 
approach is that distributed integrity rules, 
that is, rules that depend on data stored in 
different databases, can be enforced. 

1.4.3 Location Transparency and Schema 
Maintenance 

Location transparency is the ability to deal 
with distributed data without having to 
know where it is or even that it is distrib- 
uted. There are two levels at which location 
transparency is relevant: the level of the 
user (programmer or interactive user) and 
the level of the database administrator. 

At one extreme, users may have to spec- 
ify data items by machine name or address, 
DBMS identifier, database name, and data 
item name. At the other extreme, users may 
only have to specify logical names of data 
items. For pure logical data item naming to 
work, there must be some kind of naming 
convention that guarantees uniqueness of 
names for all data items accessible by the 
user, a troublesome requirement if there 
are users who need access to essentially all 
the data of the enterprise. A compromise is 
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to require the user to specify a logical data- 
base name and a data item name, with the 
system mapping logical database names to 
local databases or federated schemata. 
This requires only system-wide uniqueness 
of logical database names and uniqueness 
of data item names within each logical 
database. 

There is also a range of choices for how 
the database administrator(s) provide lo- 
cation transparency for the programmer or 
interactive user. At one extreme, the data- 
base administrator(s) may individually 
maintain multiple data dictionaries at mul- 
tiple sites describing what data can be 
found where. These data dictionaries may 
all represent a global schema and describe 
all the data in the system, or they may each 
represent a particular federated schema 
and only describe data of interest to a par- 
ticular group of users. At the other extreme, 
the system itself may make all decisions 
about data placement and maintain all di- 
rectories automatically (although this ex- 
treme would be highly unusual in a 
heterogeneous system). A compromise ap- 
proach is to have any changes in data place- 
ment be entered only once and to have the 
system automatically propagate the infor- 
mation throughout the system as needed. 

In a system with multiple federated sche- 
mata, the data dictionaries and directories 
are typically physically decentralized. In a 
system with a single global schema, they 
are logically centralized but may be physi- 
cally centralized or distributed. In either 
case, as indicated above, varying degrees of 
centralization and coordination are possi- 
ble for their maintenance. 

1.5 Types of Heterogeneity 

Many people in the research community 
have traditionally regarded a “heteroge- 
neous” database system as one involving 
multiple data models. From a practical 
standpoint, however, a distributed database 
system may involve a number of different 
types of heterogeneity-computer hard- 
ware, operating systems, communications 
links and protocols, database management 
systems (vendors), and/or data models- 
each of which presents its own problems to 

the system developer. Different hardware 
and operating systems may use different 
data representations, for example, different 
character codes or different representations 
for floating point numbers. Different com- 
munications mechanisms require gateways, 
and these can be difficult to implement 
because of the different capabilities in- 
volved. For example, one protocol may al- 
low an out-of-band interruption of a 
session, whereas another may not. Differ- 
ent DBMS vendors may use different data 
definition and data manipulation lan- 
guages, even though they may be using the 
same data model. Different data models can 
present a difficult schema translation and 
query translation problem, especially if per- 
formance is important. 

2. STANDARDS ACTIVITIES 

One key to efficient development of heter- 
ogeneous distributed database systems is a 
standard language and protocol for remote 
data access. If all of the local sites in the 
system supported a common set of data 
operations, accessible via a standard lan- 
guage, it would greatly simplify managing 
distributed queries. If support for a “pre- 
pare to commit” state was also standard- 
ized, implementing a distributed two-phase 
commit protocol would be very straightfor- 
ward. Moreover, if the local systems all 
used strict two-phase locking (locks held 
until commit point), as many of today’s 
database systems do, distributed concur- 
rency control would be implied by distrib- 
uted two-phase commit [Breitbart and 
Silberschatz 19881. Distributed deadlock 
detection would, however, be needed. 

There are two major hurdles to overcome 
in reaching a consensus on the many tech- 
nical issues involved in such standards. One 
is the usual problem of getting a diverse 
community of vendors and users to agree 
on a common way of doing things when 
they may already have investments in sep- 
arate solutions. The other problem, which 
in this case, is perhaps more serious is that 
there has still been relatively little experi- 
ence with distributed databases in produc- 
tion use. Even those organizations that 
have implemented them often do not feel 
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they have a good understanding of precisely 
what functionality should be provided, let 
alone precisely how various things should 
be handled in the remote data access lan- 
guage. There is not even a widely accepted 
reference model for distributed database 
systems. 

Nonetheless, both the International 
Standards Organization (ISO) and the 
American National Standards Institute 
(ANSI) are active in this area. The RDA 
Rapporteur Group of Working Group 3 on 
Database of IS0 TC97/SC21 was formed 
in late 1985 to work on a Remote Data 
Access (RDA) standard, and Subcommittee 
X3H2.1 of Technical Committee X3H2 on 
Databases of the ANSI/X3 Committee 
on Information Processing Systems was 
formed in late 1988 to coordinate U.S. 
input into the IS0 process. It is possible 
that an IS0 Draft International Standard 
could be approved as early as mid-1990 and 
an International Standard, could be ap- 
proved as early as mid-1991. 

3. SOME EXISTING SYSTEMS 

This section presents a brief description of 
a sampling of systems that have been de- 
veloped or are being developed for produc- 
tion use. Four general types of information 
are 

(1) 

(2) 

(3) 

(4) 

given for each system: 

Background-motivation, objectives, 
and history for the project or product 
System characteristics-capabilities or 
features of the system, including its 
positioning in Sheth and Larson’s tax- 
onomy of heterogeneous distributed 
database systems [Sheth and Larson 
19901 
System architecture-major system 
components and their functions 
Current status and future plans-in- 
cluding, in some cases, an estimate of 
the amount of work that has gone into 
the project or product and/or some 
of the major lessons learned during 
development 

To avoid numerous footnotes, we consol- 
idated the following trademark acknowl- 
edgements: IBM, IMS, SQL/DS, DB2, 

IBM PC, OS/2, VM, CMS, MVS, and SNA 
are trademarks of International Business 
Machines Corporation. DEC, VMS, and 
VAX are trademarks of Digital Equipment 
Corporation. Sun Workstation is a trade- 
mark of Sun Microsystems, Inc. Apollo Do- 
main is a trademark of Apollo Computers, 
Inc. RIM is a trademark of Boeing Com- 
puter Services. FOCUS is a trademark of 
Information Builders, Inc. UNIX is a reg- 
istered trademark of AT&T. ORACLE is a 
trademark of Oracle Corporation. IDM is 
a trademark of Sharebase, Inc. Mermaid 
is a trademark of UNISYS Corporation. 
System 2000 is a trademark of Intel Cor- 
poration. Ingres/STAR and Ingres/Gate- 
way are trademarks of Ingres Corporation 
(formerly Relational Technology, Inc.). 
SQL Server, SQL Toolset, Open Client, 
and Open Server are trademarks of Sybase, 
Inc. 

3.1 ADDS (Amoco Production Company, 
Research) 

3.1.1 Background on ADDS 

The Amoco Distributed Database System 
(ADDS) [Breitbart and Tieman 1985; 
Breitbart et al. 19861 project began in late 
1983, responding to the problem of inte- 
grating databases distributed throughout 
the corporation. Applications were being 
planned that required data from multiple 
sources. At the time, database products did 
not provide effective means for accessing 
or managing data from diverse systems. 
Therefore, the ADDS project was initiated 
to simplify distributed data access and 
management within Amoco. 

3.1.2 ADDS System Characteristics 

ADDS provides uniform access to preexist- 
ing heterogeneous distributed databases. 
The ADDS system is based on the rela- 
tional data model and uses an extended 
relational algebra query language. A subset 
of the ANSI SQL language standard is also 
supported. In the terminology of [Sheth 
and Larson 19901, ADDS is a tightly cou- 
pled federated system supporting multiple 
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federated schemata. Local database sche- 
mata are mapped into multiple federated 
database schemata, called Composite 
DataBase (CDB) definitions. The map- 
pings are stored in the ADDS data diction- 
ary. The data dictionary is fully replicated 
at all ADDS sites to expedite query 
processing. A CDB is usually defined for 
each application. Multiple applications and 
users may, however, share CDB definitions. 
Users must be authorized to access specific 
CDBs and relational views that are defined 
against the CDBs. 

The CDBs support the integration of the 
hierarchical, relational, and network data 
models. Local DBMSs currently supported 
include IMS, SQL/DS, DB2, RIM, 
INGRES, and FOCUS. Semantically 
equivalent data items from different local 
databases, as well as appropriate data con- 
version for the data items, may be defined. 

The user interface consists of an Appli- 
cation Program Interface (API) and an in- 
teractive interface [Lee et al. 19881. The 
API consists of a set of callable procedures 
that provide access to the ADDS system 
for application programs. Programs use the 
API to submit queries for execution, access 
the schema of retrieved data, and access 
retrieved data on a row-by-row basis. 
The API provides programmers with lo- 
cation and DBMS transparent access to 
distributed databases. 

The interactive interface allows terminal 
users to execute queries, display the results 
of the queries, and save the retrieved data. 
The interactive interface is actually an ap- 
plication that uses the API to provide a 
high-level interface for ADDS. Free-form 
query submission is supported for experi- 
enced users, and menu-driven query sub- 
mission is supported for those less 
experienced with the ADDS and SQL lan- 
guages. Frequently used queries may be 
stored in the query catalog, and cataloged 
queries may be selected and modified by 
the user before execution. 

Queries submitted for execution are com- 
piled and optimized for minimal data trans- 
mission cost. Semijoins and common 
subquery elimination are just two of the 
query optimization techniques used. A user 

may submit any number of queries for si- 
multaneous execution. ADDS allows a user 
to “disconnect” from the execution of a 
query, which is important for long-running 
queries. A failed query is automatically re- 
started, without loss of intermediate re- 
sults, after the cause of the failure is 
determined and corrected. Also, query ex- 
ecution may be deferred to nonprime time, 
thereby decreasing execution costs. 

The ADDS system includes geographi- 
cally distributed mainframes running the 
VM and MVS operating systems and Sun 
and Apollo workstations running the 
UNIX operating system. Therefore, provid- 
ing a uniform network interface to these 
systems is important for ADDS develop- 
ment and maintenance. The Network In- 
terface Facility (NIFTY) architecture [Lee 
et al. 19881 is an extension of the OS1 
Reference Model [ISO 19821 and provides 
a uniform and reliable interface to com- 
puter systems that use different physical 
communication networks. An ADDS pro- 
cess on one system can initiate a session 
with an ADDS process on another system 
without regard for the multitude of heter- 
ogeneous network hardware and software 
that is used to accomplish the session. 
Currently, NIFTY supports interprocess 
communication using SNA, ethernet 
(TCP/IP), and binary synchronous net- 
works. 

ADDS maintains the autonomy of the 
local database systems and does not require 
any modifications to local DBMS software. 
The only communication between ADDS 
and the local DBMSs is in the form of query 
submission and data retrieval. 

3.1.3 ADDS System Architecture 

The layered architecture of the ADDS sys- 
tem is illustrated in Figure 1. Global trans- 
actions are application programs composed 
of one or more global database queries and/ 
or updates. A single query may reference 
data at several sites. The Global Transac- 
tion Interface (GTI) verifies the syntactical 
correctness of user queries and constructs 
a global execution plan. The Global Data 
Manager (GDM) determines the location 
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Figure 1. ADDS architecture from [Breitbart et al. 19871. 

of the data referenced by a global transac- 
tion from the CDB definition in the Data 
Dictionary. The GDM also manages all 
intermediate data that is received from 
the Global Transaction Manager (GTM) 
during transaction execution. The GTM 
manages the execution of the global trans- 
actions and allocates servers to process 
global subtransactions. 

The GTM uses a two-phase server allo- 
cation strategy to guarantee the atomicity 
of global transactions. All servers remain 
allocated to a global transaction until the 
transaction completes. This implies that all 
local data items referenced by a global 
transaction remain locked until the trans- 
action completes. Local transactions that 
have no data items in common with global 
transactions are unaffected. The GTMs on 
different network nodes negotiate for 
server resources when it is necessary for a 
transaction submitted at one node to access 
data on other nodes. The servers perform 
local security verification, then translate 
the subqueries into the language of the local 

DBMSs. The servers also perform data 
conversion as the local data is retrieved and 
transfer the data to the GTM for further 
processing. 

A “site graph” concurrency control algo- 
rithm [Breitbart et al. 1987,1989a; Thomp- 
son 19871 was used in early efforts to 
support update transactions in ADDS. This 
general algorithm guarantees the serializ- 
able execution of global transactions with 
permitted local transactions and the ab- 
sence of global deadlocks [Gligor and 
Popescu-Zeletin 19851. In a very active sys- 
tem, however, too many global transactions 
are aborted. To reduce transaction aborts 
and increase throughput, ADDS was mod- 
ified to use a two-phase locking algorithm, 
with timeouts to guarantee freedom from 
global deadlocks. A two-phase commit pro- 
tocol is used to write the results of the 
global transactions into the local databases. 
Although no longer used for concurrency 
control, the site graph is an important 
tool for guaranteeing global database con- 
sistency during commit and recovery 
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processing [Breitbart et al. 1989b]. Used in 
this way, the site graph algorithm provides 
acceptable performance. 

3.1.4 ADDS Status and Future Plans 

A production version of the ADDS system 
that supports retrieval transactions has 
been deployed within Amoco. Prototype 
support for distributed update transactions, 
including concurrency control and commit/ 
recovery management, has been integrated 
into a centralized version of the system; 
that is, a version in which all global queries 
are submitted at a single site. Preparations 
are being made for the limited deployment 
of the ADDS update system prototype. 

Future plans include (1) developing a 
decentralized version of the transaction 
management, concurrency control, and 
commit/recovery algorithms and (2) build- 
ing tools to simplify the CDB definition 
process and to maintain synchronization 
between the CDB definitions and the local 
database schemata. 

Some of the lessons learned during 
ADDS development and deployment are as 
follows: 

Introducing distributed data manage- 
ment into a large organization can be a 
monumental problem. 
A flexible user interface design is neces- 
sary to meet diverse and changing user 
requirements. 
Adequate query optimization and data 
security are essential for system accep- 
tance. 
Separating the network architecture 
from the ADDS architecture allowed con- 
centration on important problem areas in 
both components individually. 

3.2 DATAPLEX (General Motors Corporation) 

3.2.1 Background on DATAPLEX 

Many different kinds of database manage- 
ment systems and file systems are used in 
the manufacturing industry because of the 
diverse data management requirements. 
Historically, there has been no effective 
means to share these heterogeneous data- 

bases. The lack of effective data sharing 
causes inefficient engineering and manu- 
facturing activities and business opera- 
tions. Duplicated data at different locations 
often results in data inconsistency. 

A heterogeneous distributed database 
system is an effective means of sharing data 
in an organization with diverse data sys- 
tems. DATAPLEX is a heterogeneous dis- 
tributed database management system 
being developed by General Motors Cor- 
poration [Chung 19901. Sections 3.2.2 and 
3.2.3 describe the functions and methodol- 
ogies of DATAPLEX in its target full- 
function form. Section 3.2.4 describes 
its current implementation status. 

3.2.2 DATAPLEX System Characteristics 

DATAPLEX allows queries and transac- 
tions to retrieve and update distributed 
data managed by diverse data systems such 
that the location of data is transparent to 
requestors. In this environment, different 
data management systems can run on dif- 
ferent operating systems that may be con- 
nected by different communication 
protocols. 

The relational model of data is used as 
the global data model. Since different data 
models used by unlike database systems 
structure data differently, the data defini- 
tion for each sharable database in the het- 
erogeneous distributed database system is 
transformed to an equivalent relational 
data definition or conceptual schema. The 
conceptual schema is implemented as a set 
of overlapping relational schemata, one for 
each location. The relations at each loca- 
tion represent data objects that need to be 
accessed by users at that location. Conse- 
quently, conceptual schemata are neither 
centralized nor replicated. Thus, in the 
terminology of [Sheth and Larson 19901, 
DATAPLEX is a tightly coupled fed- 
erated system supporting multiple feder- 
ated schemata. 

Use of a common data model eases the 
problem of providing a uniform user inter- 
face. Among several relational query lan- 
guages, SQL was chosen as the uniform 
user interface because SQL is widely used 
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and an ANSI standard has been developed 
for it. Both interactive SQL queries and 
embedded SQL programs are supported. 

3.2.3 DATAPLEX System Architecture 

The above strategies establish the archi- 
tecture of DATAPLEX. Figure 2 shows 
DATAPLEX and other elements in a het- 
erogeneous distributed database system. 
The functions of DATAPLEX are per- 
formed by 14 major modules, described 
here. 

The Controller module schedules the in- 
vocations of the rest of the modules and 
handles inputs and outputs of the modules. 

The User Interface and Application In- 
terface modules provide interfaces for quer- 
ies to be entered into DATAPLEX. The 
User Interface appears to users as a com- 
mand prompter or a form-oriented query 
facility. The Application Interface is linked 
to a compiled application before executing 
the application. 

The Distributed Database Protocol 
(DDBP) module provides communications 
between the DATAPLEX software at user 
locations and data locations. Different 
communication protocols can be used by 
adapting the DDBP to them. 

The SQL Parser module checks syntactic 
errors of SQL statements. The Distributed 
Query Decomposer and Distributed Query 
Optimizer modules prepare distributed 
queries for execution, with the aid of the 
Data Dictionary Manager module. The 
Translator and Local DBMS Interface mod- 
ules provide interfaces to the local database 
systems for execution of local subqueries, 
and the Relational Operation Processor of 
the user-location DATAPLEX merges the 
results from the local sites to provide the 
final query result. 

The Data Dictionary Manager finds the 
location of the data referenced by a query 
and determines the type of the query. There 
are three different types of queries: user- 
location query, remote single-location 
query, and distributed query. The user-lo- 
cation query and the remote single-location 
query are special cases of the distributed 
query. 

To process a distributed retrieval query, 
the Distributed Query Decomposer decom- 
poses the distributed query into a set of 
local queries and a user-location query that 
merges the results from other locations. (A 
local query references data from a single 
location that may be a remote location). 
The user-location (source) DATAPLEX 
sends local SQL queries to data-location 
(target) DATAPLEXs using the DDBP. 

The Translator finds query translation 
information from a translation table that 
records differences of data names and data 
structures between the conceptual schema 
and the local schema. The Translator 
translates a local SQL query to a query 
(or program) in a local data manipulation 
language (DML) using the translation 
information. The distributed query decom- 
position method and translation scheme 
used by DATAPLEX are described in a 
previous report [Chung 19871. The Local 
DBMS Interface sends the translated query 
to the local DBMS and obtains the local 
result. The local result is in a report form 
similar to a relation regardless of the data 
structure used by a local DBMS. 

The Distributed Query Optimizer of the 
source DATAPLEX schedules an optimal 
data reduction plan using the statistical 
information from the target DATAPLEX. 
The data reduction plan [Chung and Irani 
19861 is a sequence of semijoins that con- 
sists of local data reduction operations and 
data moves among computers. Upon com- 
pletion of the execution of the data reduc- 
tion plan, the reduced local results are sent 
to the source DATAPLEX. There the Re- 
lational Operation Processor of the source 
DATAPLEX merges the local results by 
processing the user-location query. 

To process a distributed update query, 
the Distributed Query Decomposer gener- 
ates a set of local retrieval queries to iden- 
tify the specific data to be updated, as well 
as a set of update queries, one for each 
relation to be updated. 

The Distributed Transaction Coordinator 
enforces two-phase locking on referenced 
data at the local DBMSs that are involved. 
Although there are a number of global 
deadlock detection and avoidance methods 
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Figure 2. DATAPLEX in a heterogeneous distributed database system. 

for homogeneous systems [Elmagarmid 
19861,there hasnotbeenmuchresearch on 
this topic for heterogeneous systems. Until 
more research results are available, the 
time-out method is used initially to handle 
global deadlocks. After the specific data to 
be updated is identified by processing the 
retrieval part, the local update queries are 
processed, incorporating a two-phase com- 
mit to enforce the update atomicity, and 
then the locks on the referenced data are . 
released. There are also Security Manager l 

and Error Handler modules. 

show the feasibility of the concepts under- 
lying the DATAPLEX approach. The 
prototype system interfaces an IMS 
hierarchical DBMS running under the 
MVS operating system and an INGRES 
relational DBMS running on a VAX com- 
puter under the VMS operating system. 

The features the prototype system pro- 
vides to users are as follows: 

SQL queries to IMS 
Distributed SQL queries to IMS and 
INGRES 

All modules of DATAPLEX are indepen- l 

dent of the local data system except for the 
Translator and Local DBMS modules. 
Thus, any data system can be interfaced to -~ 

Distributed SQL queries embedded in a 
C language program 

DATAPLEX by developing these two mod- 
ules for them. This architecture is modular 
and is an open architecture with which 
functionality and performance can be 
gradually increased. 

3.2.4 DATAPLEX Status and Future Plans 

The data types supported between IBM 
and DEC computers are characters, text 
(variable length fields), integers, floating 
point numbers, and packed decimal num- 
bers. In addition, the prototype system 
checks whether a user is authorized to ac- 
cess IMS data at a segment level using the 
user id. 

A prototype DATAPLEX was jointly de- 
veloped in 1986 with a DBMS vendor to 

Since rapid prototyping was required to 
show the feasibility of the concept before 
developing a full-function DATAPLEX, 
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updates of IMS data and full query opti- 
mization were not implemented in the 
prototype system. In addition to these 
restrictions, the system supports only a 
subset of SQL defined to have the following 
syntax: 

SELECT list of target attributes 
and set functions 

FROM list of relations 
WHERE qualifications 
ORDER BY attributes 

where set functions are MAX, MIN, SUM, 
COUNT, AVERAGE, and the qualification 
contains >, >=, <, <=, =, <>, AND, OR, 
NOT, and parentheses. 

A testbed has been established at General 
Motors Research Laboratories, with a test 
distributed database and test transactions. 
Users formulate requests based on the re- 
lational view of the distributed database. 
The location and the type of the actual 
database are transparent to users. The sys- 
tem executes the requests. 

Production IMS data have been used to 
test the effect of the size of the database on 
efficiency. The data is from the Mainte- 
nance Management Information System 
(MMIS) running at a car assembly plant. 
The MMIS database contains a few 
hundred thousand records. This is about 
1000 times bigger than that of the test 
IMS database. The results of tests using 
the production database show the proto- 
type system incurs some overhead com- 
pared with access using PL/I programs. 
As the database size grows, the fraction 
of the overhead to the total processing 
time decreases. It was observed that the 
SQL-to-DL/I Translator and IMS Inter- 
face modules were the bottleneck in ac- 
cessing IMS data through the prototype 
DATAPLEX. 

Based on the success of the prototype 
system, General Motors Corporation has 
initiated the development of a full-function 
DATAPLEX system, interfacing IMS, 
DB2, and INGRES with outside vendors. 
The full-function system uses full SQL, and 
the initial version supports distributed re- 
trieval and single-location update. Cur- 
rently, most of the initial version has been 
implemented, and completed components 

are being tested using production applica- 
tions and data. Subsequent versions will 
provide the capabilities of distributed 
update, multiple copy synchronization, 
and support for horizontal and vertical 
partitioning. 

3.3 IMDAS (National Institute of Standards 
and Technology, U. Florida) 

3.3.1 IMDAS Background: Sharing Data in a 
Manufacturing Complex 

In modern manufacturing systems, two 
developments are paramount: 

l Industrial Automation-computer sys- 
tems controlling and monitoring the 
physical processes 

l Computer Integrated Manufacturing 
(CIM)-direct data sharing among pro- 
duction control systems and the engi- 
neering and administrative systems that 
support them 

In most industrial facilities, control, en- 
gineering, and administrative systems op- 
erate on computer systems and database 
systems from different manufacturers. 
They contain independently designed, 
c ,.ferlapping databases, with logical and 
physical differences in the representation 
of the same real-world objects. These exist- 
ing systems represent a major investment 
and support real production. It is not fea- 
sible to replace or significantly redesign 
them. 

The Integrated Manufacturing Data Ad- 
ministration System (IMDAS) [Barkmeyer 
et al. 1986; Krishnamurthy et al. 1987; Su 
et al. 19861 was developed to support a 
prototype CIM environment-the NBS Au- 
tomated Manufacturing Research Facility 
(AMRF) [Nanzetta 19841, a testbed for 
small-batch manufacturing automation 
and in-process measurement. The objective 
was to provide access from many systems 
to the many sources of manufacturing data, 
cooperating with existing applications on 
existing databases while enabling new and 
modified application programs to access 
data as needed, insulated from accidental 
distinctions in location, representation, 
and access mechanisms. 
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3.3.2 IMDAS System Characteristics 

In the terminology of [Sheth and Larson 
19901, IMDAS is a tightly coupled feder- 
ated system with a single global schema. 
The integrating data model is the Semantic 
Association Model (SAM*) [Su 19851, a 
semantic network data model capable of 
representing the complex structures and 
relationships and many integrity con- 
straints found in a manufacturing enter- 
prise. A fragmentation schema maps the 
global model to the underlying databases, 
supporting both horizontal and vertical 
partitioning of a given object class. 

Existing database systems are front 
ended by IMDAS modules supporting an 
internal query interchange form, which is 
an extended algebra on generalized rela- 
tions corresponding to the modeled object 
classes, and a corresponding data inter- 
change form, expressed in Abstract Syntax 
Notation 1 [ISO 1987a, 1987b]. This com- 
mon interface is readily mapped onto un- 
derlying relational and navigational 
databases. A library of routines supporting 
it minimizes the effort involved in integrat- 
ing new data systems and databases. 

The user program phrases queries in an 
SQL-like language adapted to the model. 
The query is passed to the IMDAS in string 
form, rather than precompiled, to permit 
access by controllers programmed in non- 
standard languages. This mechanism can 
support an interactive interface, although 
none has been built yet. IMDAS supports 
both distributed updates (transaction man- 
agement) and distributed retrievals (query 
management). The fragmentation schema 
does not currently support replication, 
however, which is a significant limitation 
of the system. 

3.3.3 IMDAS System Architecture 

The architecture of IMDAS is shown in 
Figure 3. The lowest level of architecture 
comprises the data repositories-data- 
bases, files, controller memories-managed 
by commercial DBMSs, file systems, home- 
grown application-specific servers, and so 
on. These are the existing data systems on 
which the IMDAS depends. Each computer 

system in the enterprise has a Basic Data 
Server (BDAS), which provides the inter- 
face between the local repository managers 
and the integrated data system. It contains 
the front-end processes that provide the 
standard interfaces for the local DBMSs. 
The BDASs and the DBMSs are the ele- 
ments that execute the data manipulations. 

The Distributed Data Servers (DDASs) 
perform the query processing and transac- 
tion management functions. Each DDAS 
provides the query interface to all applica- 
tion programs within a cluster of computer 
systems that are its segment of the enter- 
prise and logically integrates the collection 
of data repositories managed by the BDASs 
in that cluster into a corresponding seg- 
ment of the global database. The DDASs 
manage the data manipulations. 

The Master Data Server (MDAS) is 
needed when there is more than one DDAS. 
It integrates the separately managed seg- 
ments into the global database and man- 
ages transactions that cross segment (i.e., 
DDAS) boundaries. The MDAS does not 
“manage” the fully distributed system; it is 
rather a utility used by the distributed serv- 
ers to resolve the global model and provide 
concurrency control for transactions that 
involve multiple DDASs. 

The IMDAS modular architecture per- 
mits several “distributed data system ar- 
chitectures” to be built from the same 
components. A system with exactly one 
DDAS and one BDAS is essentially a cen- 
tralized system, whereas a system with one 
DDAS and multiple BDASs is a distributed 
system with centralized control. A system 
with multiple DDASs is a distributed sys- 
tem with distributed control. 

An application program issues a trans- 
action to the IMDAS in string form in the 
data manipulation language. The DDAS 
query processor in that cluster converts the 
transaction, expanding application-specific 
views into standard operations on concep- 
tual generalized relations. If the resulting 
query can be executed entirely within 
the DDAS segment, it is passed to the 
DDAS transaction manager. Otherwise, it 
is sent to the MDAS. In either case, the 
query processor reports final status to 
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Figure 3. The IMDAS hierarchy. 

the user program when the transaction is 
completed. 

The DDAS transaction manager, using a 
fragmentation schema describing the dis- 
tribution of its segment of the global model, 
maps the query into a set of subqueries, 
each of which operates on elements of the 
global database managed by an individual 
DBMS. The mapping algorithm takes into 
account the capabilities of the target 
DBMS. Operations that exceed the capa- 
bilities of the repository DBMS are routed 
to a sufficiently capable DBMS, with tem- 
porary generalized relations specified to 
hold the data to be operated on. This is also 
the mechanism by which information units 
from multiple DBMSs are integrated. 

The subqueries are then dispatched to 
the affected BDASs, using optimistic com- 
mitment in the case of update, because 
many of the DBMSs have no commitment 
features at all. That is, individual sub- 
transactions commit independently on the 
assumption that all will commit. The trans- 
action manager uses a locking mechanism 

BASIC 
.TA SERV 

(BDAS) 

l ee 

'ER 

to ensure that simultaneous read/write or 
write/write access to the same underlying 
“database” is avoided. In this context a 
“database” is a modeled collection of infor- 
mation, which is a (possibly proper) subset 
of the data managed by a single DBMS. 
Transactions that “conflict” at this level 
are serialized by the controlling transaction 
manager, thus effecting distributed concur- 
rency control. 

An affected BDAS receives subqueries 
from the DDAS in the interchange form, 
specifying the operations to be performed 
on the local data repositories and the 
sources and destinations of the associated 
data. The BDAS converts the subquery to 
the form appropriate to the designated 
DBMS and passes it to that DBMS, con- 
verting any data involved between the 
DBMS form and the interchange data 
form, and reports completion to the DDAS. 
The BDAS itself accesses any referenced 
local data that are not managed by a 
DBMS-files or shared memory [Libes 
1985; Mitchell and Barkmeyer 1984]- 
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converting between the user-specified rep- 
resentation and the IMDAS interchange 
form. The BDAS also accesses required 
remote data by communication with the 
remote BDAS, moving the data directly 
from producer to consumer without regard 
to the control path. (For example, if DDAS- 
1 specifies that data be sent from BDAS-1 
to BDAS-2, the data would go directly from 
BDAS-1 to BDAS-2 without going through 
DDAS-1.) 

The MDAS is essentially a DDAS trans- 
action manager with a fragmentation 
schema that describes the distribution of 
the global model over the DDASs, instead 
of the DBMSs. It accepts transactions from 
and reports status to the individual DDAS 
query processors. It sends subqueries to and 
receives status reports from the individual 
DDAS transaction managers. Since the 
MDAS is a clone of the DDAS transaction 
manager, it can be instantiated in any sta- 
tion that has a DDAS and thus can readily 
be replaced in the event of failure. 

3.3.4 IMDAS Status and Future Plans 

IMDAS modules currently exist for VAX 
computers running under the VMS oper- 
ating system and for Sun Workstations 
(which run under the UNIX operating sys- 
tem) using TCP/IP networks. IMDAS in- 
terfaces currently exist for RTI/Ingres 
[Ingres 19861 and BCS/RIM [Boeing Com- 
puter Services 19851 systems, for the 
object-oriented GBASE system [Le Noan 
19881, for the AMRF Geometry Modeling 
System [Tu and Hopp 19871, and for sev- 
eral file systems and shared-memory sys- 
tems. The current IMDAS is just over 
100,000 lines of C and Pascal code, and it 
represents 15-20 staff years of effort. 

A front end for DBMSs using SQL and 
IMDAS modules for the IBM PC are in 
development. Modifications to IMDAS to 
use OS1 networks for both internal and 
external communication and the draft 
Remote Data Access protocol [ISO 19891 
for the user-IMDAS interface are also 
underway. 

Experience in mapping the IMDAS se- 
mantic model to different DBMSs and ap- 
plication databases indicates that the use 
of a semantic integrating model was a wise 

choice, but the SAM* model itself is not 
sufficiently flexible. Consideration is being 
given to replacement of SAM* with a more 
complete semantic network data model into 
which many common information models 
can be translated; for example, SDM, IDE- 
FIX, NIAM, Express, and OSAM*. This 
implies reworking of the query language, 
the internal query interpretation, and the 
mapping onto application databases, each 
of which has its own strengths and weak- 
nesses, and all of which are appropriate 
joint research efforts for the 1990s. 

On the other hand, the separation of 
paths for control and data flow at the user 
interface and within the IMDAS, a clear 
departure from conventional wisdom, has 
proven itself to be both effective and effi- 
cient and yielded a number of other capa- 
bilities, coding elegancies, and design 
dividends. 

3.4 lngres (Ingres Corporation’) 

3.4.1 Background on lngres 

Ingres Corporation grew out of the 
INGRES project at the University of Cali- 
fornia at Berkeley, a research project on 
relational database technology that began 
in the early 1970s [Stonebraker 19861. The 
company was incorporated as Relational 
Technology, Inc., in 1980 and changed its 
name to Ingres Corporation in 1989. The 
first commercial Ingres database manage- 
ment systems were delivered to customers 
in 1981. Ingres products currently are avail- 
able for a wide range of mainframes, mini- 
computers, workstations, and personal 
computers under a wide range of operating 
systems. 

Ingres/NET, which provides remote ac- 
cess from an Ingres application at one site 
to an ingres database at another site, was 
first introduced in 1983. Ingres/STAR, 
which provides transparent access to dis- 
tributed data, was first introduced in late 
1986. 

3.4.2 IngreslSTAR System Characteristics 

The Ingres DBMS provides access to an 
Ingres database, which is a named collec- 
tion of tables. Ingres front-end programs 
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submit SQL queries to the Ingres DBMS 
to obtain data stored in the database. 

An Ingres Gateway provides a method 
whereby data stored in other (i.e., non- 
Ingres) data managers is made to appear as 
if it were stored in an Ingres database and 
thus is made available to Ingres front-end 
programs. 

The Ingres/STAR system allows users to 
access a distributed database, which is de- 
fined as a collection of tables from one or 
more Ingres databases. Any set of tables 
from any set of Ingres databases can be 
combined to form a new, distributed 
Ingres/STAR database. This includes not 
only databases under an Ingres DBMS but 
also databases accessible via an Ingres/ 
Gateway and, in the near future, other 
Ingres/STAR databases. A single Ingres/ 
STAR server may service multiple distrib- 
uted databases, and multiple Ingres/STAR 
servers may exist in the network. Thus, in 
the terminology of [Sheth and Larson 
19901, Ingres/STAR is a tightly coupled 
federated system supporting multiple fed- 
erated schemata. 

Access to the Ingres/STAR distributed 
databases is transparent in the sense that 
once the database has been created, the 
users of the database no longer need to 
know anything about the existence of the 
individual Ingres databases that make up 
the distributed database. Their contents 
are now available transparently via Ingres/ 
STAR. Ingres/STAR appears to front-end 
programs just as if it were a centralized 
Ingres DBMS. Front-end programs func- 
tion in the same manner regardless of 
whether the database being accessed is dis- 
tributed or not, except for the restriction 
(in the current release) that within a single 
transaction only inserts/deletes/updates to 
data at a single site are allowed. That is, a 
distributed commit protocol has not yet 
been implemented in the current release of 
Ingres/STAR. 

Ingres/STAR itself does not deal directly 
with the physical storage and retrieval of 
data. Instead it relies upon the Ingres/ 
DBMS and/or Ingres/Gateway compo- 
nents to do this. The Ingres/STAR com- 
ponent communicates with these Ingres 
data managers (either Ingres DBMSs or 

Gateways) in the same manner a front-end 
program would. The same information is 
communicated. Ingres/STAR sends a query 
language representation of the desired 
work, and the data manager replies with 
the requested data. Figure 4 illustrates a 
typical configuration of users, data man- 
agers, and Ingres/STAR servers. 

3.4.3 IngresjSTAR System Architecture 

As noted above, the Ingres/STAR system 
builds a distributed database from a num- 
ber of underlying component databases. In 
order to provide long-term storage for in- 
formation about this federation, Ingres/ 
STAR uses a local database called the Co- 
ordinator Database (CDB). The CDB holds 
information on each distributed database 
concerning 

Which databases are used in the distrib- 
uted database 

The location of these databases 

The data manager associated with each 
database 

What tables from each database are in- 
cluded in the distributed database 

Naming (aliasing) information about 
these tables 

Every Ingres DBMS, whether in a cen- 
tralized or in a distributed system, uses 
the Internal Ingres Database Database 
(IIDBDB) to determine the information 
(sites, disks, users, etc.) necessary to access 
local or distributed databases. Each site 
contains one IIDBDB, any number of da- 
tabases, and some number of servers. In- 
formation about each Ingres/STAR 
distributed database would appear in the 
IIDBDBs at sites at which queries to the 
distributed database originate. An Ingres/ 
STAR server must have access to the 
IIDBDB containing information about 
each component database of each distrib- 
uted database that it manages. 

Figure 4 depicts a conceptual picture of 
the various components and databases 
of an Ingres/STAR system. The functions 
of Ingres/STAR are provided by seven 
major modules, described below. 
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Figure 4. Configuration of Ingres/STAR system components and databases. 

The General Communication Facility 
(GCF) provides the intercommunication 
among instances of Ingres/STAR, Ingres 
DBMSs, and Ingres/Gateways. 

The Transaction Processing Facility 
(TPF), a feature still under development, 
will be responsible for maintaining Ingres/ 
STAR’s transaction system. It will monitor 
the transaction states of the various Ingres/ 
DBMS, Ingres/Gateway, and Ingres/STAR 
partners and keep track of the state of 
distributed transactions. Thus, TPF will 
know which partners need which instruc- 
tions during the prepare, commit, and abort 
portions of a two-phase commit transac- 
tion. In the event of an Ingres/STAR crash, 
it will be TPF’s responsibility to resolve 
any outstanding transactions when Ingres/ 
STAR is running again. TPF will maintain 
its own log for recovery of distributed trans- 
actions. This log will be separate from any 
log maintained by the DBMSs for recovery 
of transactions at individual databases. 

The Query Evaluation Facility (QEF) 
manages the actual execution of queries. It 
sends subqueries to the other participants 
in a session, manipulates the returned re- 
sults as required, and returns the final re- 
sults to the Ingres/STAR client. 

The Remote Query Facility (RQF) re- 
ceives instructions from either QEF or 

TPF, formats the instructions, sends 
them to other participants in the session 
(Ingres/STARs, Ingres/DBMSs, or Ingres/ 
Gateways), and returns answers to the 
requestor. 

The Relation Description Facility (RDF) 
provides efficient access to catalog infor- 
mation by retrieving it, caching it, and 
managing the cache. 

The Parser Facility (PSF) parses the 
query and passes it on to the Optimizer 
Facility (OPF) in parsed form. OPF plans 
the method of performing the query. This 
process is more complex than in an Ingres 
DBMS because it must take into account 
the capabilities of the various data man- 
agers involved in executing the query (since 
some may be gateways), the amount of data 
that must be moved from one site to an- 
other, the network speed(s), and the query- 
processing facilities available at the site of 
the Ingres/STAR server itself. 

3.4.4 IngresjSTAR Status and Future Plans 

Gateways are currently available on a pro- 
duction basis for RMS files and RDB da- 
tabases on VAX computers under the VMS 
operating system and for DB2 databases on 
IBM (or compatible) mainframes under the 
MVS operating system. Gateways are soon 
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expected to be available on a production 
basis for SQL/DS databases and IMS 
databases. 

A near-term future release will provide 
support for a two-phase commit protocol, 
thereby implementing the distributed 
transaction management capabilities and 
allowing distributed updates with full dis- 
tributed data consistency and recovery. 
Support is also planned for horizontal and 
vertical partitioning of tables and for rep- 
licated tables. 

One of the biggest challenges in designing 
gateways has been in understanding the 
capabilities required of the local data man- 
agers for participation in distributed oper- 
ations. A subset of SQL that is supported 
by all gateways has been designed, and this 
common SQL is used in the Ingres/STAR 
product. This common subset is expected 
to evolve over time. 

Similarly, providing a unified view of the 
system catalogs and data types across a 
variety of data managers has been a diffi- 
cult job. A set of standard catalog infor- 
mation has been defined that is available 
from all gateways. This catalog information 
is used by Ingres/STAR to obtain infor- 
mation about the local databases. 

3.5 Mermaid (Data Integration, Inc.) 

3.5.1 Background on Mermaid 

Development of the Mermaide system be- 
gan at System Development Corporation 
(now a part of Unisys) in 1982 [Templeton 
et al. 1987a, 1987b]. The motivation for the 
project was the requirement in the Depart- 
ment of Defense (DOD) for accessing and 
integrating data stored in autonomous 
databases. DOD cannot standardize on a 
single type of hardware or DBMS and 
therefore must develop the capability to 
operate in a permanently heterogeneous 
environment. After the completion of 
Mermaid it became clear that this require- 
ment was not unique to DOD. In fact, any 
large organization may have multiple au- 
tonomous databases. In 1989, the develop- 

@ Mermaid is a trademark of Unisys Corporation. 

ment team left Unisys to start Data 
Integration, Inc., which is continuing de- 
velopment of Mermaid as a commercial 
product. 

3.5.2 Mermaid System Characteristics 

In the terminology of [Sheth and Larson 
19901, Mermaid is a tightly coupled feder- 
ated system supporting multiple federated 
schemata. In a sense, Mermaid is not a 
database management system but rather a 
front-end system that locates and inte- 
grates data that are maintained by local 
DBMSs. Parts of the local databases may 
be shared with global users. 

There are two parts to presenting a single 
database view to the user of the federated 
system. First, a federated view or schema of 
all or parts of the component databases 
must be defined. Second, at run time the 
system needs to translate from the feder- 
ated schema into the form in which the 
data are actually stored. 

The user is able to use a single query 
language, SQL, to access and integrate the 
data from the different databases. The sys- 
tem automatically locates the data, opens 
connections to the backend DBMSs, issues 
queries to the DBMSs in the appropriate 
query language, and integrates the data 
from multiple sources. Integration may re- 
quire translation of the data into a standard 
data type, translation of the units, combi- 
nation or division of fields, union of hori- 
zontal fragments, join of vertical fragments, 
and/or encoding values. 

Several levels of heterogeneity are sup- 
ported: 

l Hardware 
l Operating system of the DBMS host 
l Network connection to the DBMS host 
l DBMS type and query language 
l Data model-relational, network, se- 

quential file 
l Database schema 

Presently the system permits retrieval 
across databases and updates to a single 
database. A read transaction may see an 
inconsistent state of the database, since 
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local updates may occur in the local data- 
bases during query execution. Mermaid 
minimizes the window of inconsistency by 
making snapshots of all relations as a first 
step in processing. The snapshot also re- 
duces relations using the query’s selects and 
projects and translates the schema into the 
federated schema. Updates to replicated 
and fragmented relations may cross data- 
bases, but the updates to all databases are 
not necessarily made concurrently. Pro- 
cessing is done interactively, although an 
application program interface is being 
developed. 

3.5.3 Mermaid System Architecture 

As shown in Figure 5, Mermaid has four 
components: the User Interface, the server, 
the Data Dictionary/Directory (DD/D) 
and the DBMS Interfaces. Most of the 
Mermaid software resides in a server that 
exists on the same network as the user 
workstations and DBMSs. The DBMSs 
may reside on the workstations or on main- 
frame computers. The system is designed 
for flexibility and modularity. All compo- 
nents may reside on a single computer, or 
each may reside on a different computer. 
In a large system with many users there 
may be several copies of the components. 

At least one Mermaid server must exist 
to provide a platform for the code. The 
server contains the optimizer that plans 
query processing and the controller that 
configures the system and controls execu- 
tion. The server runs on a Sun Worksta- 
tion, taking advantage of its support for 
many network protocols. 

The User Interface includes code to au- 
thenticate users, initialize the system, edit 
queries, maintain a query library, get help 
with the system, view reports, and option- 
ally manipulate the output returned 
through other programs. Support is pro- 
vided for both workstations and dumb ter- 
minals and for both single window and 
multiple window interfaces. 

The current Mermaid code provides sev- 
eral levels of access control that make it at 
least as secure as a commercial DBMS. The 
first level of access control is a list of users 
with permission to execute Mermaid from 

the workstation where the user is logged in. 
Next, the DD/D is opened and permissions 
are checked for the specific federated da- 
tabase or view. These permissions must 
reflect the permissions granted by the ad- 
ministrators for the underlying databases. 
Mermaid then logs into the local computers 
and opens the underlying databases. 

The query optimizer does dynamic plan- 
ning. It first locates all required relations 
and selects one or more copies of replicated 
relations and some or all fragments of re- 
lations. Each local relation is reduced with 
selects, projects, and joins to other relations 
at the same site. The size of each interme- 
diate result is returned and used to plan the 
next step. The optimizer considers network 
speeds and relative processor speeds when 
determining the best way to process the 
query. If there are large relations to be 
joined, it may perform semijoins between 
sites before moving data to an assembly 
site. As much processing as possible is done 
in parallel. 

Each Mermaid component uses the RPC 
remote procedure call protocol above 
Transmission Control Protocol/Internet 
Protocol (TCP/IP) to communicate with 
the other components, with the possible 
exception of code residing on the DBMS 
host. This allows the communication to be 
the same whether the processes are local or 
remote. All messages between DBMS In- 
terfaces go through the server, which pro- 
vides protocol conversion. For example, if 
one DBMS site uses LU6.2 and another 
uses TCP/IP, the server would receive 
a message from the DBMS interface 
(DBMSI) at the first site using an LU6.2 
protocol and send it to the DBMS1 at the 
second site using the TCP/IP protocol. 

The Data Dictionary/Directory is a re- 
lational database, stored in a commercial 
DBMS, that contains information about 
the databases and environment. Figure 5 
shows the case of the DD/D residing on the 
server. The DD/D may also reside on a 
different computer. 

The DBMSs generally reside on different 
computers. Mermaid has an open architec- 
ture that will support the development of 
interfaces to many types of DBMS. The 
only requirement is that the data are 
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Figure 5. Mermaid system architecture. 

managed by a DBMS that provides sepa- 
ration of the application from the data, 
retrieval of data elements by name (not file 
offsets), selection of records, an interactive 
query language, and concurrency control. 

There are three generic types of DBMS 
interface. A Class I DBMS is the favored 
type. The current INGRES, ORACLE, and 
IDM interfaces fall into this class. The 
DBMS1 code can be put on the same com- 
puter as the DBMS and interfaced to the 
DBMS through a subroutine call. This pro- 
vides the most efficient operation and the 
best error handling. A Class II DBMS 
either does not support standard network 
protocols or does not allow the Mermaid 
DBMS interface code to reside on the same 
computer as the DBMS. An example of this 
would be a database machine. The schema 
and language translators then reside on the 
server or on another front-end computer. A 
Class III DBMS is accessed using a termi- 
nal emulator interface such as a 3270 em- 
ulator from a front-end processor. An 
example of this would be a DBMS that only 
supports an interactive terminal interface. 

RETRIEVAL 

This type of interface can be difficult to 
develop and is weak in error handling. 

Mermaid also has the capability to re- 
trieve data from files. A file is a typed object 
with a retrieval method and a display 
method. The user selects a set of files of 
interest by searching on structured fields 
and listing structured fields and files in the 
target list. The report looks like a standard 
report from a relational system except that 
files are given a symbolic name. The user 
enters the symbolic name of one or more 
files he or she wants to see. The method 
(process) to retrieve the file is started 
on the computer where the file is stored, 
and the method (process) to display the 
file is started in a window on the user’s 
workstation. New file types can be sup- 
ported by writing the retrieve and display 
methods. 

3.5.4 Mermaid Status and Future Plans 

The run-time part of Mermaid was com- 
pleted at Unisys. Work on the system 
was started in 1982, and the system was 
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completely recoded from 1986 to 1987. The 
total level of effort was 30-40 staff years. 

Data Integration, Inc., was founded in 
April 1989 to continue the product devel- 
opment. The two major missing compo- 
nents in the system at that time were a 
DBMS-independent DD/D Builder Tool 
and a system administration utility. These 
are currently being completed and pro- 
fessional documentation is being written. 
Additional DBMS interfaces are being de- 
veloped under contract. 

The biggest challenge faced by the devel- 
opers of Mermaid has been error handling. 
Mermaid runs above many layers of 
DBMS, operating system, and network pro- 
tocol. Each layer has many error conditions 
that may cause errors in other layers. There 
is no clear definition of all errors that can 
occur in each layer or how other layers 
respond to errors. When an error does oc- 
cur, it is difficult for the Mermaid code to 
understand the source of the error and po- 
tential cures. It is also difficult to describe 
some errors to the user. 

Another major problem has been coping 
with new releases of the underlying soft- 
ware. Mermaid frequently encounters prob- 
lems when new releases of the DBMS, 
operating system, or network are installed. 
This poses problems for support of a het- 
erogeneous database system because re- 
lease control can be difficult in such an 
environment, and testing of all combina- 
tions of underlying software is generally not 
possible. 

3.6 MULTIBASE (Xerox Advanced 
Information Technology’) 

3.6.1 Background on MULTIBASE 

MULTIBASE [Landers and Rosenberg 
19821 provides a uniform, integrated inter- 
face for retrieving data from preexisting, 
heterogeneous, distributed databases. It 
was designed to allow the user to reference 
data in these databases with one query 
language over one database description 
(schema). By presenting a globally inte- 

1 Formerly the Advanced Information Technology 
Division of Computer Corporation of America. 

grated view of information, MULTIBASE 
allows the user to access data in multiple 
databases quickly and easily. Because there 
is an integrated schema and a single query 
language, the user has to be familiar with 
only one uniform interface instead of nu- 
merous local system interfaces. 

The MULTIBASE project was initiated 
in 1980 to develop a software system that 
would enable organizations to achieve in- 
tegrated data access without replacing ex- 
isting databases. The system has three 
major design objectives. First, it is a general 
system that is not designed for any specific 
application area. It can be used without 
making changes to existing databases and 
does not interfere with existing application 
programs. Second, MULTIBASE has been 
designed to incorporate a wide range of data 
sources. These data sources encompass the 
major classes of DBMSs (hierarchical, net- 
work, relational) as well as file systems 
and custom built DBMSs. Third, MULTI- 
BASE has been designed to minimize the 
cost of adding a new data source. The sys- 
tem is largely description driven, and 
its modular architecture minimizes the 
amount of custom software that must be 
developed for each new DBMS. 

3.6.2 MULTIBASE System Characteristics 

MULTIBASE uses a data definition and 
manipulation language called DAPLEX, 
which is based on the functional data model 
[Landers et al. 1984; Shipman 19811. Be- 
cause the functional model is rich enough 
to represent relational, hierarchical, and 
network database schemata directly, the 
need to translate these schemata and their 
corresponding operations into a strictly re- 
lational model has been eliminated. The 
system supports ad-hoc query access 
through several interactive interfaces and 
an Ada application program interface. 

In the terminology of [Sheth and Larson 
19901, MULTIBASE is a tightly coupled 
federated system that provides for the def- 
inition of multiple local schemata and mul- 
tiple federated schemata, or views. Local 
schemata describe the data available at an 
individual local DBMS. Views describe in- 
tegrations of the data described in local 
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schemata. Users can query any combina- 
tion of local schemata or views, and multi- 
ple schemata or views can be referenced in 
a single query. From the user’s perspective, 
views provide complete location transpar- 
ency. The MULTIBASE view definition 
language supports horizontal and vertical 
fragmentation and data mapping of the 
data contained in the individual local da- 
tabases. MULTIBASE makes no restric- 
tions on the queries that can be processed 
over views. The current version of the sys- 
tem does not, however, support updates. 
Each MULTIBASE location maintains 
its own directory of local schemata and 
views. 

The MULTIBASE view mechanism is 
also used to resolve data incompatibilities 
[Katz et al. 19811 that frequently arise 
when separately developed and maintained 
databases are accessed conjointly. In- 
compatibilities include (a) differences in 
naming conventions, underlying data 
structures, representations, or scale, 
(b) missing data, and (c) conflicting data 
values. When defining a view, the database 
administrator applies knowledge of the lo- 
cal databases to determine what incompat- 
ibilities might arise and what rules should 
be used to reconcile them. The rules are 
included in the view definition, after which 
they are followed automatically by the sys- 
tem in generating answers to queries. 

MULTIBASE performs query optimiza- 
tion at both the global and local levels 
[Dayal et al. 1981,1982]. At the global level, 
the system creates query execution strate- 
gies that attempt to minimize the amount 
of data moved between sites and to maxi- 
mize the potential for parallel processing 
that is inherent when multiple distributed 
databases are accessed. At the local level, 
the system attempts to minimize the 
amount of time to retrieve data from a local 
DBMS by taking full advantage of the local 
DBMS query language, physical database 
organization, and fast access paths. 

3.6.3 MUL TIBASE System Architecture 

As shown in Figure 6, a MULTIBASE sys- 
tem consists of three major types of com- 
ponents: the Global Data Manager (GDM), 

one or more Local Database Interfaces 
(LDIs), and the Internal DBMS. 

The GDM is the central component of 
MULTIBASE, providing query manipula- 
tions that require global knowledge. These 
operations include translation of queries 
expressed over views into queries expressed 
over individual local databases, modifica- 
tion of queries to compensate for operations 
that cannot be performed at the individual 
local databases, optimization, and genera- 
tion of plans for the execution of the user’s 
query. All query manipulation in the GDM 
is performed in an internal form of 
DAPLEX. The GDM is responsible for 
management of the global directory, in- 
cluding views, local schemata, authoriza- 
tion information, and descriptions of local 
DBMS capabilities. 

Local Database Interfaces are responsi- 
ble for receiving queries that have been 
generated by the GDM, translating these 
queries from DAPLEX into a form that is 
acceptable to the local DBMS and pass- 
ing these queries to the local DBMS to 
be processed. The LDI receives the data 
from the local DBMS, translates it into 
MULTIBASE standard format, and re- 
turns it to the GDM. A MULTIBASE sys- 
tem can contain multiple LDIs. 

LDIs are only developed for each new 
local DBMS. The GDM transmits to the 
LDI the local schemata for the LDI’s da- 
tabases. The local schema contains the in- 
formation required by the LDI to generate 
queries against the individual local data- 
bases. In general, the GDM does not have 
to be modified to add a new local database 
or DBMS. The information about the 
LDI and local DBMS that is required by 
the GDM is stored by the GDM in the 
directory. 

The Internal DBMS is a DAPLEX 
DBMS that is used by the GDM for any 
processing that cannot be performed at an 
individual local DBMS. This provides 
MULTIBASE users with the full power of 
the DAPLEX query language against any 
local DBMS. Any operation that cannot be 
performed by a local DBMS is performed 
transparently by the Internal DBMS using 
data that has been retrieved by the LDI 
under direction of the GDM. The Internal 
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Figure 6. MULTIBASE component architecture. 

DBMS can also store auxiliary databases 
that are used to support resolution of data 
incompatibilities. For example, auxiliary 
databases can contain new data that are 
not available in any local databases, statis- 
tics used to determine which data values 
should be used in case of conflict, and con- 
version tables that provide a means of per- 
forming data transformations that cannot 
be done using simple formulas. 

3.6.4 MULTIBASE Status and Future Plans 

A MULTIBASE prototype system has been 
implemented in Ada. It supports the capa- 
bilities described above except that only a 
portion of the global optimization design 
has been implemented. The GDM software 
is about 350,000 Ada source lines. It exe- 
cutes on a VAX under the VMS operating 
system. LDIs have been developed for five 
DBMSs. They provide access to ORACLE 
and RIM systems executing under the VMS 
operating system and to FOCUS, System 
2000, and DMR (a hierarchical DBMS de- 
veloped by the U.S. Army) systems execut- 
ing under the MVS operating system. The 
LDIs vary in size from 7000 to 20,000 Ada 
source lines. To minimize the cost of adding 
a new DBMS to MULTIBASE, a set of 
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LDI building blocks has been created. 
These building blocks implement LDI pro- 
cessing that is common to all LDIs and 
greatly reduce the amount of new software 
required to create an LDI. 

MULTIBASE is currently being used as 
a component of two systems. One system is 
a prototype for supporting design, manu- 
facturing, and logistics of large mechanical 
systems. The other system is a pilot dem- 
onstration of the utility of distributed het- 
erogeneous data management for providing 
integrated access to logistics databases. 
Both of these efforts require MULTIBASE 
to interface to existing databases that are 
not based on the relational model. 

Several lessons have been learned during 
this project that will provide direction for 
future enhancements to MULTIBASE. 
Two of the most important of these are the 
difficulties in handling local system pecu- 
liarities and the need for automated tools 
to support the creation and maintenance of 
MULTIBASE schemata. 

Although MULTIBASE has proved ef- 
fective at supporting most of the data man- 
agement capabilities of a wide range of 
DBMSs, each DBMS has had its own pe- 
culiarities (i.e., special data types, opera- 
tions, or optimization heuristics) that have 
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turned out to be difficult to support. This 
has pointed out the need for a more ex- 
tensible framework, possibly object ori- 
ented, that would allow new capabilities 
to be readily accommodated within the 
MULTIBASE system. 

Experience has indicated that automated 
tools are needed for administering the dic- 
tionary of a system that is integrating da- 
tabases from many different organizations. 
Tools are needed to assist both in creating 
MULTIBASE schemata and in maintain- 
ing consistency as changes occur to the 
local databases. 

3.7 SYBASE (Sybase, Inc.) 

3.7.1 Background on SYBASE 

Sybase, Inc., was founded in 1984 with the 
goal of bringing a high-performance distrib- 
uted RDBMS to the market. The initial 
production versions of the SYBASE SQL 
Server and the SQL Toolset (application 
development tools) were shipped in June 
1987, and there are currently more than 
1000 customers using the product on nearly 
30 different hardware platforms. Using a 
client/server architecture, SYBASE was 
designed to handle on-line, transaction-ori- 
ented applications that require high perfor- 
mance, continuous availability, and data 
integrity that cannot be circumvented. 

The need to integrate a variety of client 
applications with multiple sources of data 
is a clear requirement in today’s commer- 
cial market. Hence, in September 1989 Sy- 
base introduced the Open Server, a product 
that extends the SYBASE distributed ca- 
pabilities to heterogeneous data sources. 
This product complements the Open 
Client, a client Application Programming 
Interface (API) used to send SQL or Re- 
mote Procedure Calls (RPCs) to an SQL 
Server. Together they form the Client/ 
Server Interfaces, the basis of the SYBASE 
approach to heterogeneous distributed 
databases. 

3.7.2 SYBASE System Characteristics 

There are two broad categories of distrib- 
uted databases: on line and decision sup- 

port. Decision support applications tend to 
read-but not update-remote data. They 
are mostly concerned with presenting a de- 
cision maker with a unified, single system 
image of data that is distributed throughout 
the enterprise. On-line applications, by 
contrast, involve remote updates and have 
a strict requirement to maintain local site 
autonomy. Given the orientation of the 
SYBASE system to on-line applications, 
SYBASE is an interoperable system, or 
a “loosely coupled” federated system in 
the terminology of Sheth and Larson 
[1990]. SYBASE attempts to open the ar- 
chitecture as widely as possible to allow any 
database, application, or service to be in- 
tegrated into the client/server architecture 
in a heterogeneous environment. No global 
data model or schema is enforced. Rather, 
distributed operations can be supported via 
application programming or via database- 
oriented RPCs between SQL Servers. This 
provides a high degree of site autonomy. At 
the same time, the SQL Server provides 
full DBMS support at each location and 
“prepare to commit” support for a two- 
phase commit protocol to guarantee re- 
coverability for multisite updates [Gray 
19781. 

SYBASE is based on the relational model 
and supports both interactive and pro- 
grammed access to the SQL Server or any 
Open Server application. The basic query 
language is SQL. Multiple SQL statements 
may, however, be augmented with program- 
ming constructs such as conditional logic 
(if, else, while, etc.), procedure calls and 
parameters, and local variables. These may 
be combined into a single database object 
called a stored procedure. A procedure is 
an independently protected object and (as 
in the case of a view) can override the 
protection of the tables it references. Thus, 
it is possible to grant execution privileges 
to a procedure but disallow direct access to 
the data it references. Procedures can re- 
turn rows of data and error messages, 
and they can return values back into pro- 
gramming variables in the application 
program. 

The SQL Server also supports triggers 
as independent objects in the database 
[Date 19831. These have the capabilities 
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of procedures, with three important exten- 
sions: 

(1) They cannot be directly executed but 
rather are executed as a side effect of 
an SQL delete, insert, or update. 

(2) A trigger is an extension of the user’s 
current SQL statement. It can roll back 
or modify the results of a user’s trans- 
action. 

(3) Triggers can view the data being 
changed. 

In traditional centralized database sys- 
tems, users of on-line applications are not 
given direct update access to a database but 
rather communicate with an application 
program that protects the database from 
the user. This common approach can be 
called “application-enforced integrity.” 
The legality of any update is determined 
principally by rules enforced by the appli- 
cation program. Application-enforced in- 
tegrity is, however, a flawed approach in 
heterogeneous distributed databases, where 
the application may be written in a differ- 
ent department or in a different city from 
the DBA whose database is being updated. 

A better alternative in a heterogeneous 
distributed database is to enforce data in- 
tegrity within the database itself. Under 
this alternative, an application at a remote 
site communicates directly with a database 
that has sufficient richness of semantics to 
decide by itself whether the transaction 
violates any integrity rules. Stored proce- 
dures and triggers provide this capability. 

The SYBASE Open Server provides a 
consistent method of receiving SQL re- 
quests or remote procedure calls from 
an application based on the SYBASE 
SQL Toolset or an application using the 
SYBASE Open Client Interface and pass- 
ing them to a non-SYBASE database or 
application. Whereas Open Client gives 
users the flexibility to use a variety of front- 
end packages or applications for accessing 
and updating data, the SYBASE Open 
Server allows access to and updating of 
foreign (non-SYBASE) databases and ap- 
plications. 

At run time an application program is- 
sues a database RPC to the distributed 
database system, which consists of any 

combination of SQL Servers or Open Serv- 
ers. If the data are stored in a non-SYBASE 
source, the Open Server provides the nec- 
essary data type and network conversions 
to allow the Open Client to process the 
returned data. 

SYBASE supports distributed updates 
that span multiple locations. A two-phase 
commit protocol, coded in the application, 
enforces distributed transaction control 
across multiple SQL Servers. 

3.7.3 SYBASE System Architecture 

As shown in Figure 7, The SYBASE Open 
Server consists of two logical components. 
A server network interface manages the 
network connection and accepts requests 
from client programs running Open Client 
or database RPCs from an SQL Server. 
Event-driven server utilities in the Server- 
Library provide the logic to ensure that 
client requests are passed to the appropri- 
ate User Developed Handler and are com- 
pleted properly. They also ensure that the 
returned data are correctly formatted for 
the client program. This enables a SY- 
BASE client application to request pro- 
cessing and exchange information with any 
application or data management system. 
The SYBASE Network Interface compo- 
nent of the Open Server appears to the 
developer and user exactly as an SQL 
Server interface. It 

l Supports multiple connections from mul- 
tiple clients or SQL Servers 

l Supports multiple logical connections on 
a single network connection to increase 
network efficiency 

l Shields the user from knowledge of un- 
derlying networking 

l Passes returned data a record at a time 
in exactly the same format as an SQL 
Server 

The Server-Library enormously simpli- 
fies the coding of distributed multiuser 
server applications. The utilities supplied 
by SYBASE provide the logic to handle 
basic server events such as establishing or 
ending client connections and starting or 
stopping processes. SYBASE also provides 
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Figure 7. SYBASE open client/server architecture. 

utilities to handle SQL and database RPC 
requests. These utilities are designed to be 
extended by user-developed handlers. The 
handlers provide the logic to transmit the 
RPC or SQL request to the target applica- 
tion or data management system in a pre- 
defined predictable way. The user can also 
define additional utilities to handle events 
particular to an application or environ- 
ment. The combination of SYBASE- 
supplied and user-developed utilities pro- 
vide the flexibility to develop the appropri- 
ate server environment for any application 
or data source. Through Server-Library the 
developer can 

l Manage the task queue 
l Pass requests and parameters to foreign 

applications or data management sys- 
tems through the user handler 

l Process responses from user handlers- 
normal, error, and so on 

l Collect returned data or parameters from 
the user handler 

l Convert returned data to format compat- 
ible with client application 

3.7.4 SYBASE Status and Future Plans 

The SYBASE Open Server and Release 4.0 
of the SYBASE SQL Server, which pro- 

USER DEVELOPED 
HANDLER 

HETEROGENEOUS 
DATABASE OR 
APPLICATION 

vides a server-to-server RPC capability, 
have been commercially available since 
September 1989. They are in use at numer- 
ous customer sites performing on-line 
applications. 

The total effort involved in the develop- 
ment of these products is hard to measure. 
It would be fair to say, however, that the 
development of the SQL Server took more 
than 30 staff years, and the Open Server 
and RPC enhancements to the SQL Server 
added approximately 3 staff years. This 
includes engineering effort only and does 
not include quality assurance, documenta- 
tion, and so on. Future plans for the prod- 
uct include moving the two-phase commit 
protocol into the SQL Server and extending 
its capabilities to include heterogeneous 
systems. Access to distributed SQL Servers 
will be made transparent by means of syn- 
onyms and a distributed data dictionary. 

4. SUMMARY 

As can be seen from the above system de- 
scriptions, significant progress has been 
made in developing heterogeneous distrib- 
uted database systems for production use. 
It is, however, certainly not yet possible to 
buy a system off the shelf that will link all 
of the popular data models and database 
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management systems and provide full sup- 
port for schema integration, distributed 
query management, and distributed trans- 
action management. Moreover, although 
the architectural principles are becoming 
well understood for building a custom sys- 
tem that provides distributed query man- 
agement, the effort required actually to 
implement such a system is high. In addi- 
tion, implementing heterogeneous distrib- 
uted transaction management is not yet 
well understood. 

There are commercially available sys- 
tems that bridge a wide variety of types of 
computers, operating systems, and net- 
works. Gateways are being developed from 
these systems to various other database 
management systems based on different 
data models. Some of these commercial sys- 
tems offer distributed query management 
and some offer distributed transaction 
management, but none offer both, although 
that is expected to change in the near fu- 
ture. So far these systems offer only limited 
schema integration capabilities, without 
system support for horizontal or vertical 
fragmentation or replicated data, although 
this is also expected to change in the near 
future. 

Custom systems have been built that en- 
compass a variety of types of computers, 
operating systems, networks, database 
management systems, and data models. 
Some of these systems have rather sophis- 
ticated schema integration and distributed 
query management capabilities. They are, 
however, just beginning to develop distrib- 
uted transaction management. 

It is important to remember that this is 
a very fluid landscape. This paper was writ- 
ten in late 1989, and there will undoubtably 
be advances between that time and the time 
it appears in print. There will undoubtably 
be even more advances in the months to 
follow. Existing systems will improve their 
capabilities and new systems and vendors 
will appear. 
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